# Oats as Feed for Pigs and Poultry

August 16, 2019 Dr. Pete Lammers lammersp@uwplatt.edu



#### Grains = Carbohydrates = Energy



#### Not all carbohydrates created equal



FIGURE 4-4 Categories of dietary carbohydrates based on current analytical methods.

28

## Feed Trough Plant Carbohyrates

- 1. Starch
- Things that are not starch... aka Nonstarch Polysaccharides (NSP)

## Grains = Carbohydrates = Energy

- Starch... readily digested by mammalian enzymes
- Nonstarch polysaccharides = Fiber...
   only digested by microbes



### Quantifying Fiber

Neutral Detergent Fiber (NDF) hemicellulose + cellulose + lignin Acid Detergent Fiber (ADF) cellulose + lignin NDF  $\rightarrow$  gut fill  $ADF \rightarrow digestibility$ 

#### Feed Grains for Pigs<sup>1</sup>

|                         | Starch,<br>% | NDF<br>% | ADF,<br>% | NE,<br>MJ/kg |
|-------------------------|--------------|----------|-----------|--------------|
| Corn Grain              | 74           | 12       | 3         | 12.8         |
| Wheat, SRW <sup>2</sup> | 70           | 14       | 4         | 12.1         |
| Rye                     | 62           | 16       | 4         | 11.3         |
| Barley                  | 60           | 22       | 6         | 11.0         |
| Whole Oats              | 41           | 37       | 17        | 9.1          |

<sup>1</sup> Based on Sauvant et al 2002. All values on dry matter basis
 <sup>2</sup> Soft Red Winter (grown in humid Midwest)

#### Starch vs Fiber for Nonruminants

- More Starch = Less Fiber
- More starch = More energy dense
- More Fiber = Less energy dense

|                         | Starch,<br>% | NDF<br>% | ADF,<br>% | NE,<br>MJ/kg |
|-------------------------|--------------|----------|-----------|--------------|
| Corn Grain              | 74           | 12       | 3         | 12.84        |
| Wheat, SRW <sup>2</sup> | 70           | 14       | 4         | 12.1         |
| Rye                     | 62           | 16       | 4         | 11.3         |
| Barley                  | 60           | 22       | 6         | 11.0         |
| Whole Oats              | 41           | 37       | 17        | 9.1          |

## Impact of ADF on pig growth

- 15 pens of pigs, 8 week trial (165-290 lb)
- Fed 1 of 3 diets:
- 1. Corn-Soybean Meal4.4% ADF
- 2. Corn-SBM + 20% Wheat Middlings 4.7%
- 3. Corn-SBM + 20% Oat Screenings

4.7% ADF 8.5% ADF

Lammers and Honeyman 2017 doi:10.2527asasmw.2017.12.198

#### Average Daily Gain (lb/d)



10

#### Gain : Feed (lb of gain + lb of feed)



11

#### Take Home Message...

 Slight increases in ADF (5-7%) can maintain performance

• Larger increases in ADF will reduce growth rate and require more feed



https://nlmstudio.wordpress.com/port folio/whats-time-to-a-pig/

Nancy Lehenbauer Marshall

#### Reduced growth rate

More time in the barn OR
Smaller pig to market



Impact of 2.5 vs 2.0 ADG in 165–290 lb pigs



± 14 days to reach market weight... impact really depends on facility cost OR

# ± 30 lb live weight ~ 22 lb carcass wt \$15-17 in value at current prices

(\$71/cwt carcass weighted average https://www.ams.usda.gov/mnreports/lsddhps.pdf)

# Oats for Growing Pigs without Sacrificing Performance

- 15% total diet for 25 lb pig
- 30% total diet for 25–50 lb
- 35% total diet for 50-125
- 40% total diet for >125—
   replace ~45% of corn in diet



Can we replace all corn in a pig diet with oats???? Yes but...

- 1. Pigs will grow slower
- 2. Pigs will eat more feed



The fibrous hull is a challenge

#### Oats - Oat Hulls = Oat Groats







|                         | Starch, | NDF | ADF, | NE,   |
|-------------------------|---------|-----|------|-------|
|                         | %       | %   | %    | MJ/kg |
| Corn Grain              | 74      | 12  | 3    | 12.84 |
| Wheat, SRW <sup>2</sup> | 70      | 14  | 4    | 12.1  |
| Rye                     | 62      | 16  | 4    | 11.3  |
| Barley                  | 60      | 22  | 6    | 11.0  |
| Whole Oats              | 41      | 37  | 17   | 9.1   |
| Oat Groats              | 61      | 14  | 5    | 11.7  |

<sup>1</sup> Based on Sauvant et al 2002. All values on dry matter basis
 <sup>2</sup> Soft Red Winter (grown in humid Midwest)

#### Oats - Oat Hulls = Oat Groats







Remove the hull and there really is not a nutritional limit on feeding oats to pigs

### What about poultry????

- 20-40% of total diet without sacrificing performance
- Higher rates possible with enzyme supplementation (Beta glucanase)

#### **Beta Glucans**

- Relatively high in oats
- Reduce digestibility of starch and protein



FIGURE 4-4 Categories of dietary carbohydrates based on current analytical methods.

Enzymes (from fungi) reduce impact

# Oats for Pigs and Poultry

We can feed oats to pigs and poultry

 Market price usually disfavors— \$0.15/lb corn vs \$0.26/lb oats

 If you grow oats you can definitely feed them effectively!

#### Corn vs Oat using WI yield data

- Corn 172 bu/acre (9,632 lb/acre)
- Oat 65 bu/acre (2,080 lb/acre)

 If land planted 50-50 corn and oat, we'd need to feed pigs 18% oats

## Corn vs Oat using WI yield data

- Corn 172 bu/acre (9,632 lb/acre)
- Oat 65 bu/acre (2,080 lb/acre)

- If land planted 50-50 corn and oat, we'd need to feed pigs 18% oats
- 60% less grain than with 100% corn

#### **Farming System Resiliency**

Diversity Asecurity in face of uncertainty

... enhances nutrient cycling

... another tool to manage pests and weeds ... spreads field work out over longer period



# Oat Variety—does it matter?



# YES! Not all oats are equal under all conditions...



#### Practical Farmers of Iowa and Iowa State University Oat Variety Trials

- Multiple locations
- Multiple years
- Multiple varieties
- Primarily focused on agronomy...

https://practicalfarmers.org/research/

# Oat Variety Work

- Location impacts yield and test weight
- Growing season impacts yields and test weight
- Different varieties excel under different conditions

#### But what about the nutritive value of the oats?????

#### **Nutrient Profile of Oat Varieties**

- 2016–2018
- 23 different varieties
- 125 individual samples analyzed using NIR

#### **NIR Near Infrared Reflectance**



#### https://www.thermofisher.com

#### **Near Infrared Reflectance**

- Does not destroy the sample
- Little to no sample preparation
- Results in seconds
- 25% of the cost of wet chemistry

#### **Oat Variety Distribution**





#### No clear relationship between Starch and Protein



Higher starch content associated with lower Fiber Content

Textbook example of an inverse relationship aka negative correlation 32 lb bu/ac vs. Starch



More starch not always associated with larger yields...

| Table 1. Least squares means values and standard error obtained linear mixed model using proc mixed option in SAS. |        |     |        |     |        |     |  |
|--------------------------------------------------------------------------------------------------------------------|--------|-----|--------|-----|--------|-----|--|
| Variety                                                                                                            | Starch | SE  | aNDFom | SE  | СР     | SE  |  |
| Antigo                                                                                                             | 38b    | 1.4 | 27.4a  | 1.6 | 13.3   | 0.6 |  |
| Badger                                                                                                             | 47.4a  | 1.8 | 21.4ab | 1.9 | 13.1   | 0.7 |  |
| Betagene                                                                                                           | 44.2ab | 1.1 | 24.5ab | 1.4 | 12.6   | 0.6 |  |
| Camden                                                                                                             | 43.1ab | 1.6 | 25.1ab | 1.7 | 12.2   | 0.7 |  |
| Deon                                                                                                               | 44.8ab | 1.1 | 23.3ab | 1.4 | 12.3   | 0.6 |  |
| Esker                                                                                                              | 46.5ab | 1.6 | 23ab   | 1.7 | 13.6   | 0.7 |  |
| Excel                                                                                                              | 47.3ab | 1.8 | 22.3ab | 1.9 | 12.4   | 0.7 |  |
| Goliath                                                                                                            | 46.2ab | 1.6 | 22.9ab | 1.7 | 12.2   | 0.7 |  |
| Hayden                                                                                                             | 42.7ab | 1.2 | 25.9ab | 1.4 | 12.0   | 0.6 |  |
| Horsepower                                                                                                         | 43.3ab | 1.1 | 25.2ab | 1.4 | 12.5   | 0.6 |  |
| Jerry                                                                                                              | 42.8ab | 1.1 | 24.8ab | 1.4 | 12.6   | 0.6 |  |
| Leggett                                                                                                            | 47.2ab | 1.6 | 22.3ab | 1.7 | 11.9   | 0.7 |  |
| Pearl                                                                                                              | 47.9a  | 1.6 | 19.1b  | 1.7 | 12.5   | 0.7 |  |
| Natty                                                                                                              | 48.2a  | 1.1 | 20.9ab | 1.4 | 12.4   | 0.6 |  |
| Reins                                                                                                              | 46ab   | 1.1 | 22.3ab | 1.4 | 12.9   | 0.6 |  |
| Rockford                                                                                                           | 42.6ab | 1.6 | 24.9ab | 1.7 | 12.5   | 0.7 |  |
| Ron                                                                                                                | 42.1ab | 1.6 | 24.5ab | 1.7 | 13.7   | 0.7 |  |
| Saber                                                                                                              | 45.6ab | 1.1 | 22.6ab | 1.4 | 13.1   | 0.6 |  |
| Saddle                                                                                                             | 48.8a  | 1.6 | 19.6ab | 1.7 | 12.8   | 0.7 |  |
| Shelby                                                                                                             | 44.4ab | 1.1 | 22.4ab | 1.4 | 13.2   | 0.6 |  |
| Souris                                                                                                             | 46.7ab | 1.6 | 23.9ab | 1.7 | 11.4   | 0.7 |  |
| Sumo                                                                                                               | 47.7a  | 1.4 | 20.1ab | 1.6 | 13.6   | 0.6 |  |
| Tack                                                                                                               | 45ab   | 3.1 | 22.2ab | 2.7 | 12.4   | 1.1 |  |
| P-value                                                                                                            | 0.0111 |     | 0.0096 |     | 0.1774 |     |  |

Table 1. Least squares means values and standard error obtained linear mixed model using proc mixed option in SAS.

| <br>Variety | % Starch           | % aNDFom           |
|-------------|--------------------|--------------------|
| Antigo      | <mark>38b</mark>   | <mark>27.4a</mark> |
| Badger      | <mark>47.4a</mark> | 21.4ab             |
| Betagene    | 44.2ab             | 24.5ab             |
| Camden      | 43.1ab             | 25.1ab             |
| Deon        | 44.8ab             | 23.3ab             |
| Esker       | 46.5ab             | 23ab               |
| Excel       | 47.3ab             | 22.3ab             |
| Goliath     | 46.2ab             | 22.9ab             |
| Hayden      | 42.7ab             | 25.9ab             |
| Horsepower  | 43.3ab             | 25.2ab             |
| Jerry       | 42.8ab             | 24.8ab             |
| Leggett     | 47.2ab             | 22.3ab             |
| Pearl       | 47.9a              | <mark>19.1b</mark> |
| Natty       | <mark>48.2a</mark> | 20.9ab             |
| Reins       | 46ab               | 22.3ab             |
| Rockford    | 42.6ab             | 24.9ab             |
| Ron         | 42.1ab             | 24.5ab             |
| Saber       | 45.6ab             | 22.6ab             |
| Saddle      | 48.8a              | 19.6ab             |
| Shelby      | 44.4ab             | 22.4ab             |
| Souris      | 46.7ab             | 23.9ab             |
| Sumo        | <mark>47.7a</mark> | 20.1ab             |
| Tack        | 45ab               | 22.2ab             |
| P-value     | 0.0111             | 0.0096             |

## Preliminary Work

 Badger, Pearl, Natty, Saddle, and Sumo have higher starch content than Antigo

Antigo has higher fiber than Pearl

• Analysis continues...

# Oat Variety Work

- No obviously superior variety in terms of agronomy or feeding value
- May want to add starch content to yield and test weight as selection parameters

#### Take Home Points

- Starch and fiber inversely related in grain
- (some) Oats can be fed to livestock without impacting performance
- Regularly quantifying nutrient profile of feed can help explain livestock performance