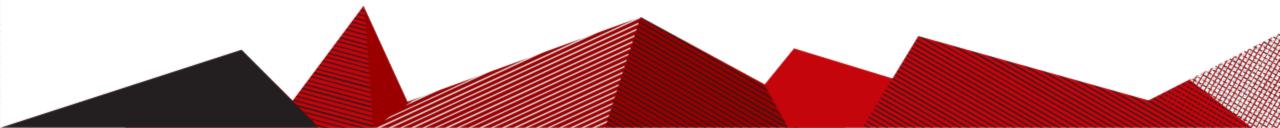
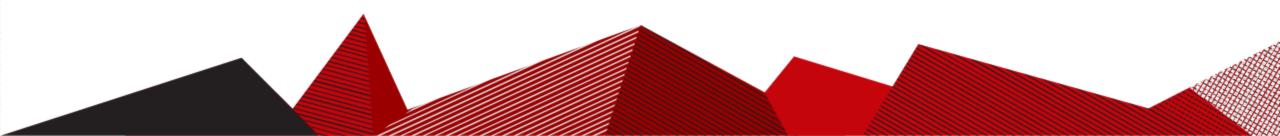


Filling in Forage Gaps PFI Small Grains Conference

Gene Schriefer Ag Educator UW-Madison, Extension Dodgeville, WI gene.schriefer@wisc.edu



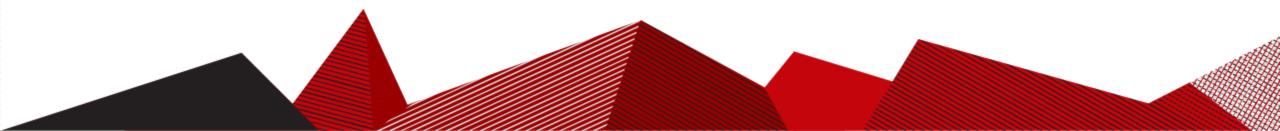
Grazing Makes Cents. . .


- Pasture value @ \$50/ton = \$0.025/ lb DM
- Cow weight 1200 lbs ~ 30 lbs forage/head/day
- 30 lbs X \$0.025 = \$0.75/head/day
- What if we can graze 365 days/year?
- \$273.75
- Who's is spending this?

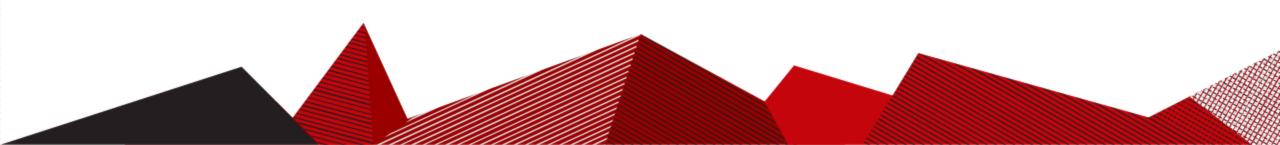
A great year is not feeding hay until Christmas and starting grazing again in Mid April.

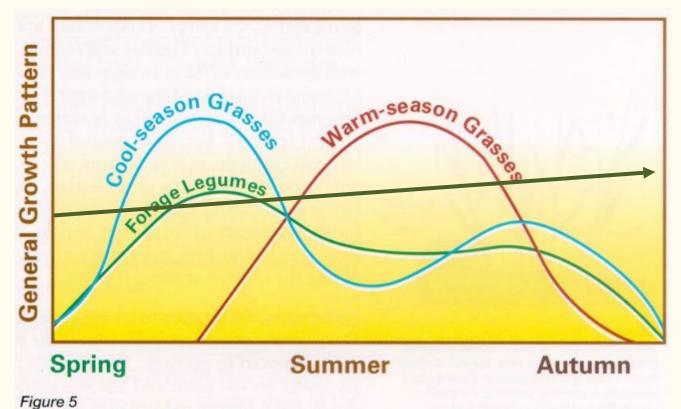
University of Minnesota FINBIN 2018 Beef Cow/Calf – 181 herds

	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
 Total Feed 	680	596	505	475	443	397	356	323	274	210
Corn (Bu.)	58.14	28.58	15.78	10.98	7.61	6.58	4.55	3.63	3.06	1.56
 Silage (tons) 	6.69	5.00	4.25	3.38	2.97	2.19	1.66	1.10	0.75	0.08
 Alfalfa (tons) 	4.38	2.83	2.12	1.75	1.40	1.07	0.67	0.47	0.14	0.05



Grass hay prices reported to USDA from selected states.								
	Forage Quality Grade							
Location	Premium	Good	Fair					
		\$ per ton						
Alabama	100-300	90	N/A					
California	210	170	N/A					
Colorado	310-340	125-265	N/A					
Idaho	150-160	N/A	N/A					
Iowa	N/A	130-185	88-134					
Kansas	140-155	85-150	75-85					
Minnesota	135-160	80-135	75-90					
Missouri	N/A	100-140	60-100					
Montana	175-270	110-180	100-125					
Nebraska	165-170	90-100	N/A					
Oregon	200-250	N/A	N/A					
Pennsylvania	195-400	115-270	110-245					
South Dakota	133	95-110	73-110					
Texas	165-200	100-145	N/A					
Washington	273(d)	243(d)-253(d)	213(d)-228(d)					
Wisconsin	N/A	110-150	N/A					
Wyoming	190-250	190	N/A					


- Harvested Feeds
- Grazed Annual Pasture
- Managed & Grazed Perennial Pasture



Grazing more days per year and feeding less stored feed has large economic impact.

Graze Year Round?

Pasture plants can vary greatly in their pattern of growth. Some producers find that pasture production is more uniform when legumes are grown with grasses, or when a warm-season grass is available for summer grazing.

From Pasture Management Guide

LOGI INVOLUTE

To Fill in Gaps, We Have a Couple Options . . .

- Reduce Forage Demand Depopulate a portion of the herd
- Increase Forage Supply Add in additional fields (crop/hay ground)
 - Stockpile forage
 - Plant something. . .

Stockpile Grazing (Deferrred Grazing)

- Growing forage and holding for future grazing
 - There needs to be adequate forage and acres available
 - Summer and fall stockpile
- Start in August, early August provides the most tons
- Minimum 6 weeks before end of growing season
- ~18-20:1 response rate to N fertilizer. 200 lbs urea = 1650 lbs of additional grass. ASSUMING – adequate moisture and NOT Kentucky Bluegrass
- Best Species Tall Fescue, Meadow Fescue, Orchardgrass, Brome.

Legume/Grass Silage Report - Standard

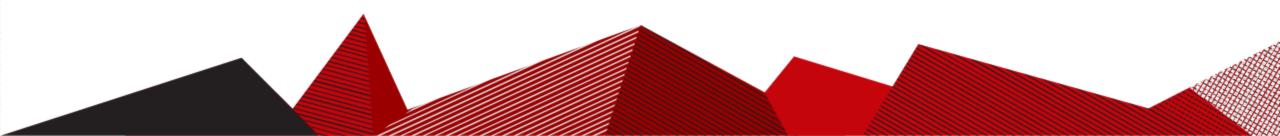
Report Number: 4839 Lab Number: 11082 Material: Legume or Grass Silage Harvest date: 11/3/2014 Sample Description: Fall Pasture Forage

ltem		Abbreviation	n Unit	Resul	lt Method
Dry Matter		DM	% as f	ed 27.59	wo
Moisture		1.1.1	% as f	ed 72.41	C
Protein Fractions					
Crude Protein		CP	% DM	20.28	
Soluble Crude Protein		SCP	% CP	37.51	
Rumen-Undegraded Protein		RUP	% CP	23.11	
Rumen-Degraded Protein		RDP	% CP	76.89	-
Acid Detergent Fiber Crude Protein		ADF-CP NDF-CP	% DM % DM	0.69	
Neutral Detergent Fiber Crude Protein		NDF-CP	% DM % DM	0.69	
Heat Damaged Protein-Estimated Adjusted Crude Protein			% DM % DM	20.28	
Adjusted Crude Protein			% DM	20.28	
Fiber Fractions					
Acid Detergent Fiber		ADF	% DM	20.27	NIR
Neutral Detergent Fiber		aNDF	% DM	38.26	NIR
Lignin, Acid Detergent		ADL	% DM	3.73	
Lignin, Acid Detergent		ADL	% aND		
Neutral Detergent Fiber Digestibility, 48	18 h NDFD			F 67.94	NIR
Carbohydrates and Fats					
Non Fiber Carbohydrate		NFC	% DM	35.41	0
Fat			% DM	2.95	NIR
рН					NA
DM	-	celle	nce	AUL	
Energy Calculations: 2001 NRC					
Total Digestible Nutrients, 1X		TDN	% DM	72.78	
Net Energy, Lactation, 3X		Nel	Mcals/		
Net Energy, Maintenance		NEm	Mcals/		
Net Energy, Gain		NEg	Mcals/		
Metabolizable Energy		ME	Mcals/		
Relative Forage Quality Milk/Ton		RFQ	lbs	223.18	
MIR/TON			IDS	3,719	G
Macro Minerals		Mierr	Minerals		
Phosphorus P 0.41	% DM 1	NIR	Iron Fe		ppm NR
Calcium Ca 0.89		NIR	Manganese Mn		ppm NR
Potassium K 3.24		NIR	Zinc Zn		ppm NR
Magnesium Mg 0.40		NIR	Copper Cu		ppm NR
Sodium Na		NB			
Chloride Cl		NB	Ash	9.04	% DM NIR
Sulfur S		NB			
WC = wet chemistry	NR = not requeste		C = calculated		
	NA = not available T = tal				

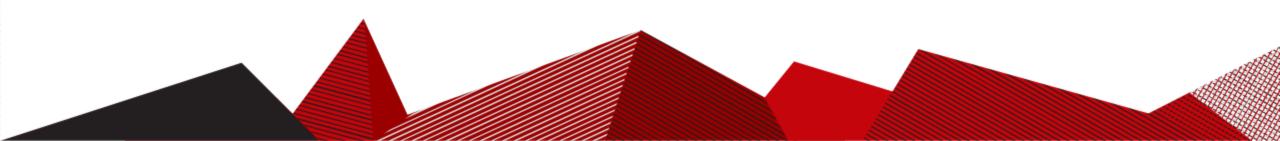
Methods used for these analyses can be found at http://uwiab.soils.wisc.edu/procedures.htm

Stockpile Grazing

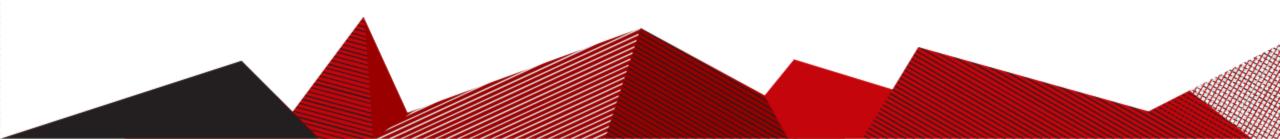
- Urea \$44/acre
- Spreading cost \$6
- Total \$50
- ~ 1850 lbs DM
- ~\$55-60/ton variable cost



Frost Seeding Red Clover into Winter Small Grains

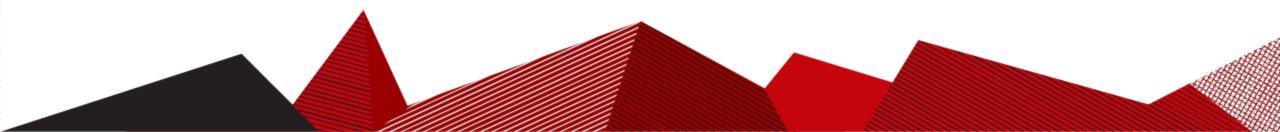

Frost Seeding Red Clover

- As soon as snow cover is off on frozen ground
- Seeding Rate 10-12 lbs per acre
- Seed Cost \$3.00/lb, ~\$30-36/acre plus seeding
- Average Yield 1.7 tons
- •~\$24/ton
- N Credit 80 lbs
- <u>https://ipcm.wisc.edu/download/pubsNM/RedClover_0109.pdf</u>



Plant Something - Using Small Grains to Fill in Forage Gaps

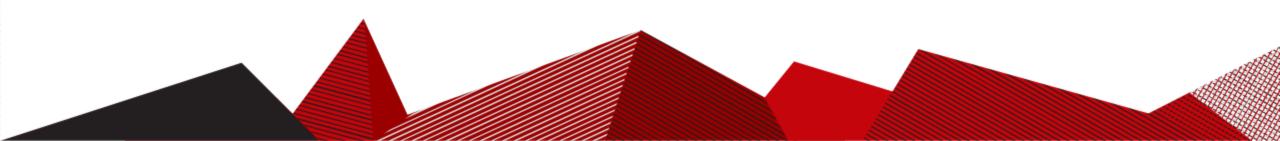
- Early Spring
- Summer
- Late Summer
- Fall

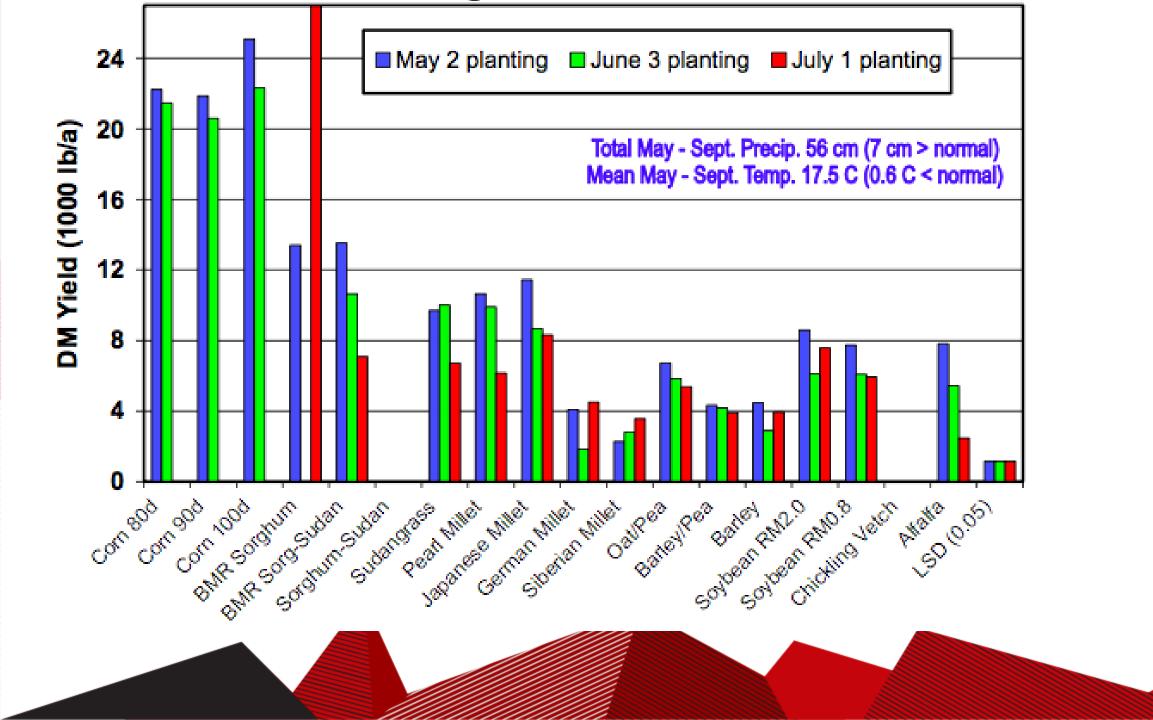


- Oats/Barley Early Spring/ Summer/Late Summer
- Spring Wheat/Triticale Early Spring
- Winter Rye/Wheat/Triticale Late Summer/ Fall

Spring Seeding

- ~43 F soil temperature
- 50-75 lbs of N
- Ready to graze 45-60 days later
- Start @ ~6 inch height
- Forage Yield 1.5- 2.5 Tons (at boot stage)




Warm Season Summer Annual Options – Graze or Harvest

- Sorghum (forage only)
- Sorghum-Sudan
- Sudan Grass
- Millet German, Pearl, Japanese
- Teff Grass

Planting Dates Soil Temperature Soil Moisture Rainfall patterns Soil Heat Units

Need more heat than corn, take 30% less moisture

- Sorghum 15 lbs/acre
- Sudan 25 lbs/acre
- Millets 25 lbs
- BMR Trait

Extension

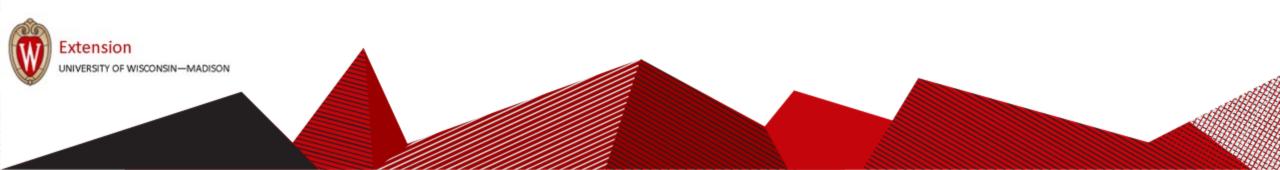
OF WISCONSIN-MADISON

- Brachytic dwarf trait
- Teff Grass 5 lbs

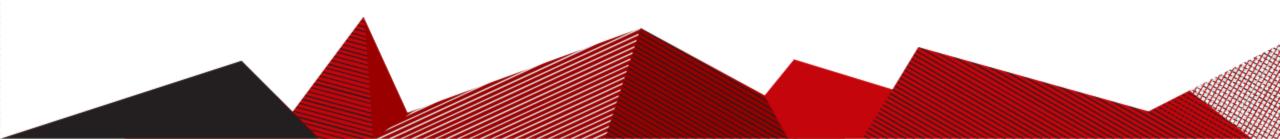
Legume/Grass Silage Report - Standard

CHIMP.

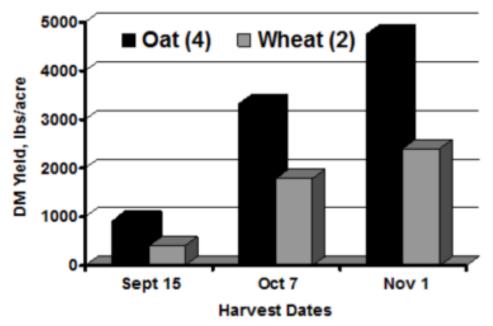
Report Number: 3940 Lab Number: 6385 Sample Description: Blotz Material: Small Grain Silage Harvest date: 9/23/2011


Item				Abbre	viation	Unit	Res	ult	Method
Dry Matter				DM		% as fed	26.0	01	wc
Moisture						% as fed	73.9	99	С
Protein Fractions									
Crude Protei	in			CP		% DM	10.0	05	NIR
Soluble Cruc				SCP		% CP	49.5		NIR
Rumen-Unde				RUP		% CP	27.1		NIR
Rumen-Degr	-			RDP		% CP	72.8	38	С
		Crude Protein		ADF-C	P	% DM	0.0	00	NIB
		er Crude Prote		NDF-C	P	% DM	3.0	09	NIR
Heat Damag	ed Protein	Estimated				% DM	0.0	00	С
Adjusted Cru	ude Protei	n				% DM	10.0	05	С
Fiber Fractions									
Acid Deterge	ent Fiber			ADE		% DM	33.3	28	NIB
Neutral Dete		ar .		aNDF		% DM	56.9		NIB
Lignin, Acid				ADL		% DM	2.7		NIB
Lignin, Acid	-			ADL		% aNDF	4.8	33	С
		er Digestibility	y, 48 h				52.9	95	NIR
Carbohydrates an	d Fats								
Non Fiber Ca	arbohvdra	te		NFC		% DM	27.3	35	с
Fat						% DM	2.3	24	NIR
pH									NA
Energy Calculation	ons: 2001	NRC		XLE	THUCH		AUF		
Total Digest				TDN		% DM	60.3	00	с
Net Energy,				Nel		Mcals/lb	0.0		č
Net Energy,				NEm		Mcals/lb	0.0		
Net Energy,		ice .		NEg		Mcals/lb 0.36			с с с с с с с
Metabolizab				ME		Mcals/lb	1.0		č
Relative For		v		REQ		in our of the	114.		č
Milk/Ton		<u> </u>				lbs	2,6	99	С
Macro Minerals	_				Micro Minerals	_			
Phosphorus		0.25	% DM	NIR	Iron	Fe		ppm	NR
Calcium	Ca	0.23	% DM	NIR	Manganese			ppm	NR
Potassium	к	1.48	% DM	NIR	Zinc	Zn		ppm	NR
Magnesium		0.21	% DM	NIR	Copper	Cu		ppm	NR
Sodium	Na		% DM	NR					
Chloride	CI		% DM	NR	Ash		6.55	% DM	NIR
Sulfur	S		% DM	NR					
WC = wet chemistry			NR = not requ		C = calcu				
WC = wet chemistry NIR = near infrared spe	ctroscopy		NR = not requ NA = not avail		C = calcu T = tabuk				

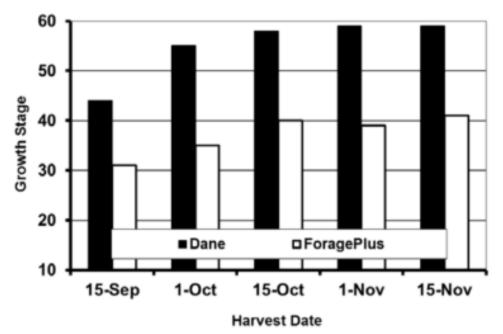
Methods used for these analyses can be found at http://uwiab.soils.wisc.edu/procedures.htm


Challenges

- Soil Temperature
- Temperature
- Seed Depth
- Stubble height, needs 8 inch residual
- Prussic Acid
- Nitrates (after drought/heavily N fertilized fields)



Summer Seeded Spring and Winter Grains


- Ed Oplinger, UW Small Grains Specialist, 1990's
- Wayne Coblentz, USDA ARS-DFRC

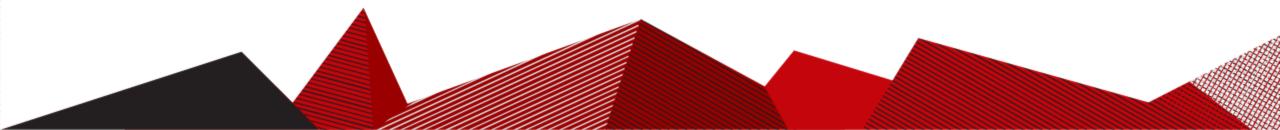
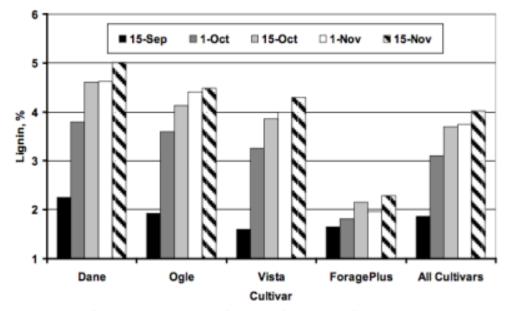
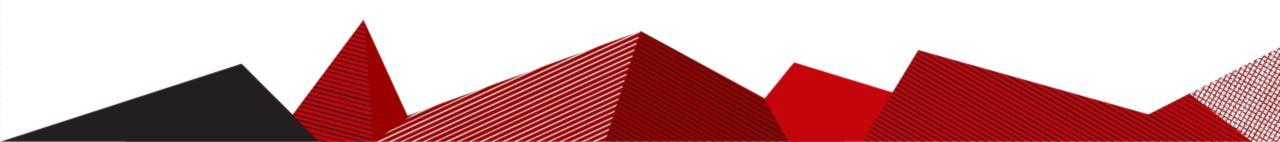
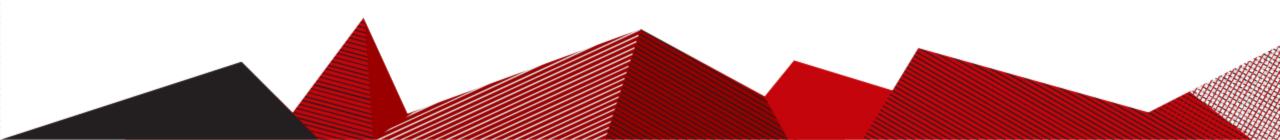

Late Summer Seeding

Figure 1. Yield comparisons of (2) winter wheat and (4) oat cultivars across three harvest dates during 2006-2007 at Prairie du Sac, WI (Coblentz and Walgenbach, 2010). Cultivars were established on 11 August 2006 and 13 August 2007.

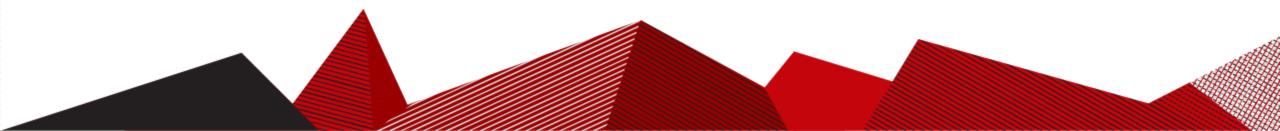
Figure 2. Mean stage of growth for Dane and ForagePlus oat cultivars planted on August 1 at Marshfield, WI (Coblentz et al., 2011). Growth stages are defined as: tillering, 20-29; stem elongation, 30-39; booting, 40-49; and heading 50-59.

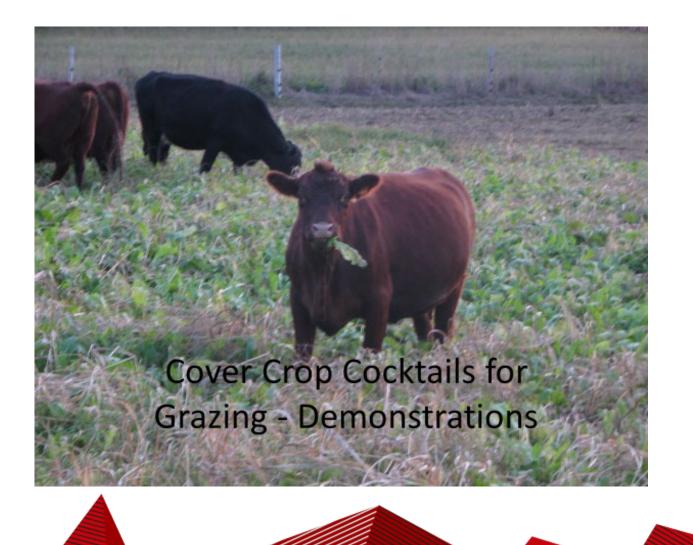




Figure 2. Concentrations of lignin from oat forages planted on August 1 and harvested on five dates throughout the fall at Marshfield, WI (Coblentz et al., 2012).

Forage Oats – Forage Plus, Everleaf, Goliath, Buck, etc.

- Seeding 2-3 bushel
- Seed costs \$10-12 bu
- Total Seed \$20-36/acre
- Drill \$15/acre
- All in \$35-51/acre
- Yield 5000 lbs
- Cost/ton \$14 20/ton


- Bin Run Oats (germination?)
- Seed Costs ~\$2.70
- Total Seed \$5-8/acre
- Drill \$15
- All in \$20-23
- Yield 4000 lbs
- Cost/ton ~\$11/ton


Summer Seeded Spring and Winter Grains – ES Oplinger

- 1.5 bushel spring grain + 1.5 bushel of winter grain seeded in August
 - Lower Fall yield than monoculture of spring grain ~1.7 tons
 - Total yield (Fall and Spring) average 4.5 tons in two grazing seasons.

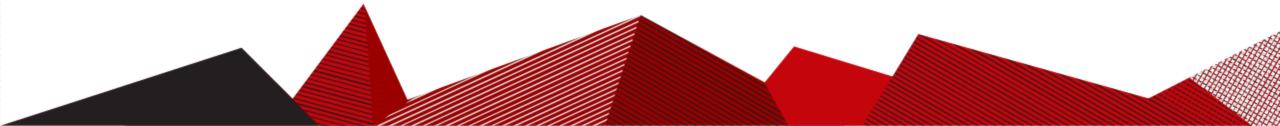
• Note: traditional grain varieties not forage varieties of oats/barley used.

Fall Cover Crop Following Small Grain Harvest

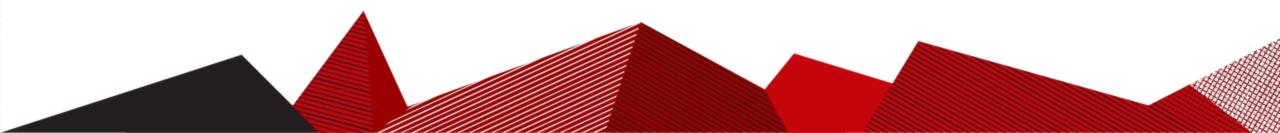
Legume/Grass Hay Report - Standard

Report Number: 5025 Lab Number: 9530 Material: Legume or Grass Hay Harvest date: 10/5/2009 Cutting: 1st

Sample Description: cover crop


Abbreviation Unit Result Method ltem Dry Matter DM % as fed 64.26 wc 35.74 Moisture С % as fed Protein Fractions 10.55 CP % DM NIR Crude Protein Soluble Crude Protein SCP % CP NA RUP Rumen-Undegraded Protein % CP 32.19 NIR RDP % CP Rumen-Degraded Protein 67.81 С NIR Acid Detergent Fiber Crude Protein ADF-CP % DM 0.28 NDF-CP % DM С Neutral Detergent Fiber Crude Protein 0.41 % DM 0.28 С Heat Damaged Protein-Estimated Adjusted Crude Protein % DM 10.55 С Fiber Fractions ADF NIR Acid Detergent Fiber % DM 27.92 aNDF % DM 39.86 NIR Neutral Detergent Fiber ADL % DM NIR Lignin, Acid Detergent 3.43 Lignin, Acid Detergent ADL % aNDF 8.61 С Neutral Detergent Fiber Digestibility, 48 h NDFD % aNDF 79.03 NIR Carbohydrates and Fats NFC С % DM 39.03 Non Fiber Carbohydrate % DM 1.58 NIR Fat Energy Calculations: 2001 NRC Total Digestible Nutrients, 1X TDN % DM 73.50 С Nel Mcals/lb С Net Energy, Lactation, 3X 0.76 С Net Energy, Maintenance NEm Mcals/lb 0.85 NEg Mcals/lb 0.57 С Net Energy, Gain С ME Mcals/lb Metabolizable Energy 1.28 236.25 **Relative Forage Quality** RFQ С С Milk/Ton lbs 3,851 Macro Minerals Micro Minerals Phosphorus P 0.31 % DM NIR Iron Fe NR ppm Calcium Ca 1.19 % DM NIR Mn NR Manganese ppm Potassium ĸ 2.85 % DM NIR Zn NR Zinc ppm Mg 0.29 % DM NIR Cu NR Magnesium Copper ppm Sodium Na % DM NR Chloride CI % DM NR Ash 9.39 % DM NIR Sulfur s % DM NR

¹ WC = wet chemistry NIR = near infrared spectroscopy


NR = not requested NA = not available C = calculated T = tabular value

Methods used for these analyses can be found at http://uwiab.soils.wisc.edu/procedures.htm

- <u>https://fyi.extension.wisc.edu/forage/altforage/</u>
- <u>https://fyi.extension.wisc.edu/forage/alternative-forage-crops/</u>
- <u>https://fyi.extension.wisc.edu/forage/emergency-forage-options/</u>
- <u>https://fyi.extension.wisc.edu/forage/cereal-forages-for-spring-planting/</u>
- <u>https://coolbean.info/pdf/small_grains/library/forage_production/</u> <u>fall_and_spring_forage_yield_and_quality.pdf</u>

Questions?

Contact: Gene Schriefer Ag Educator UW-Madison, Extension Dodgeville, WI gene.schriefer@wisc.edu