

pfi

RESEARCH PROTOCOLS

Green Manure Cover Crops in a Cereal Rye-Corn System

Objectives: Determine 1) biomass production of green manures: red clover and balansa clover intercropped with cereal rye and a mix seeded after cereal rye harvest; 2) grazing value of green manures; 3) corn yield responses to green manures; 4) potential for green manures to reduce N fertilizer rate. **Hypotheses:** Provided timely summer rainfall, the summer mix will produce the most biomass and grazing value. The clovers will provide more atmospherically-fixed N to the succeeding corn crop. Under ideal growing conditions, the grazing value of the summer mix will offset its greater cost of establishment as well as its lower N value. Under stressed or average growing conditions, one or both of the clovers will provide more value through fall forage harvest and reduced N requirements of the succeeding corn.

Farmer-Cooperator will:

- Follow Research Protocols in accordance with Project Design, Data to Collect and Timeline detailed below.
- Take photos throughout the project. Try to capture photos that depict the differences you observe among the treatments.
- Keep in contact with PFI with updates and questions.
- Turn in data and complete post-project survey by November 2021.

Practical Farmers of Iowa will:

- Help set up research protocol, monitor progress of project and provide support when needed.
- Publish results in a PFI research report, on PFI website and potentially other outlets.
- Provide \$550 research honorarium to cooperator upon receipt of data.

Project Design:

Treatment	Description
Red clover	Frost-seed red clover to existing cereal rye crop in late winter/early spring.
Balansa clover	Frost-seed balansa clover to existing cereal rye crop in late winter/early spring.
Mix	Drill-seed mix following cereal rye harvest in July.

- Apply these three treatments in a replicated trial: at least four replications of strips.
 - \circ 3 treatments x 4 replications = 12 strips total.
- Strips must be at least as wide as one combine pass and should run the length of the field.
 Example layout:

Red clover	Balansa clover	Mix	Red clover	Balansa clover	Mix	Red clover	Balansa clover	Mix	Red clover	Balansa clover	Mix
REP 1		REP 2		REP 3		REP 4					

Data to Collect (cooperator):

- Green manure cover crop biomass
 - \circ $\;$ In fall, sample above ground biomass from each strip.
 - Randomly place 1'x1' PVC square in strip
 - Use shears to clip all aboveground plant material from within the square
 - Place all samples from a single strip into one paper bag
 - (e.g., one paper bag per strip)
 - Label paper bags accordingly
 - Cover crop: red clover, balansa clover or mix
 - Number of squares sampled from (e.g., 3 squares = 3 ft²)
 - Date of collection
 - Send paper bags to PFI office
 - Samples will be dried and weighed
 - Grazing value will be estimated: https://www.extension.iastate.edu/agdm/crops/html/a1-91.html
- Corn grain yield
 - Harvest and record grain yield and moisture from each strip.
- Optional: Late-spring soil nitrate test (LSNT)
 - \circ When the corn is 6-12 in. tall, collect soil cores to a depth of 12 in. from each strip.
 - Sample collection protocols from ISU:
 - <u>https://store.extension.iastate.edu/Product/Use-of-the-Late-Spring-Soil-</u> <u>Nitrate-Test-in-Iowa-Corn-Production</u>

Project Timeline:

Fall 2019	Spring 2020	Summer 2020	Fall 2020
• Seed entire field with cereal rye cover crop.	 Frost-seed red and balansa clovers to rye crop. Take photos. 	 Harvest rye crop. Drill-seed mix. Take photos. 	 Collect green manure biomass. Graze cattle. Take photos.

Spring 2021	Summer 2021	Fall 2021
 Terminate 	 Optional: collect LSNT 	 Harvest corn from
green manure	soil samples.	all strips.
cover crops.	 Optional: split strips 	 Turn in data and
 Plant corn. 	 Typical N rate 	photos.
 Take photos. 	 LSNT recommended 	 Take post-project
	N rate	survey

Contact: Stefan Gailans, Research and Field Crops Director, (515) 232-5661; stefan@practicalfarmers.org