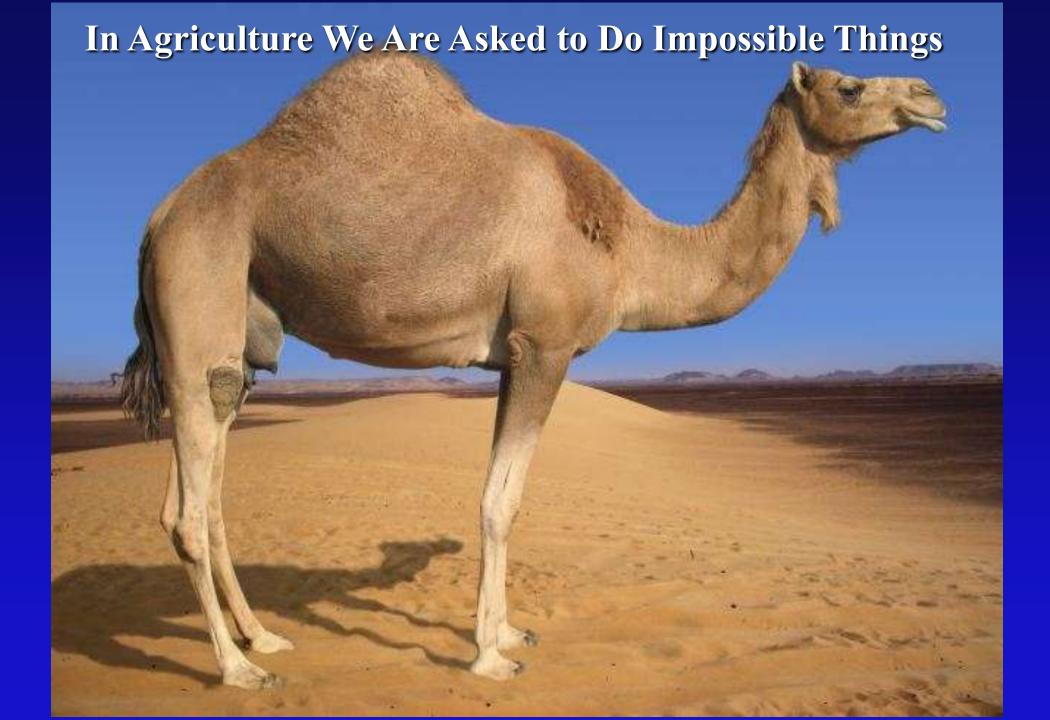
Nutrient - Disease - Herbicide Interactions

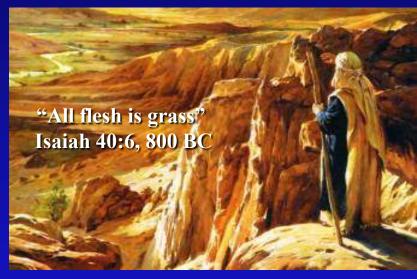

Brown Seed Field Day September 9, 2011

Don M. Huber

Emeritus Professor of Plant Pathology Purdue University, West Lafayette, IN

Parenting skills Look back and take inventory once in a while!

Hesitate!

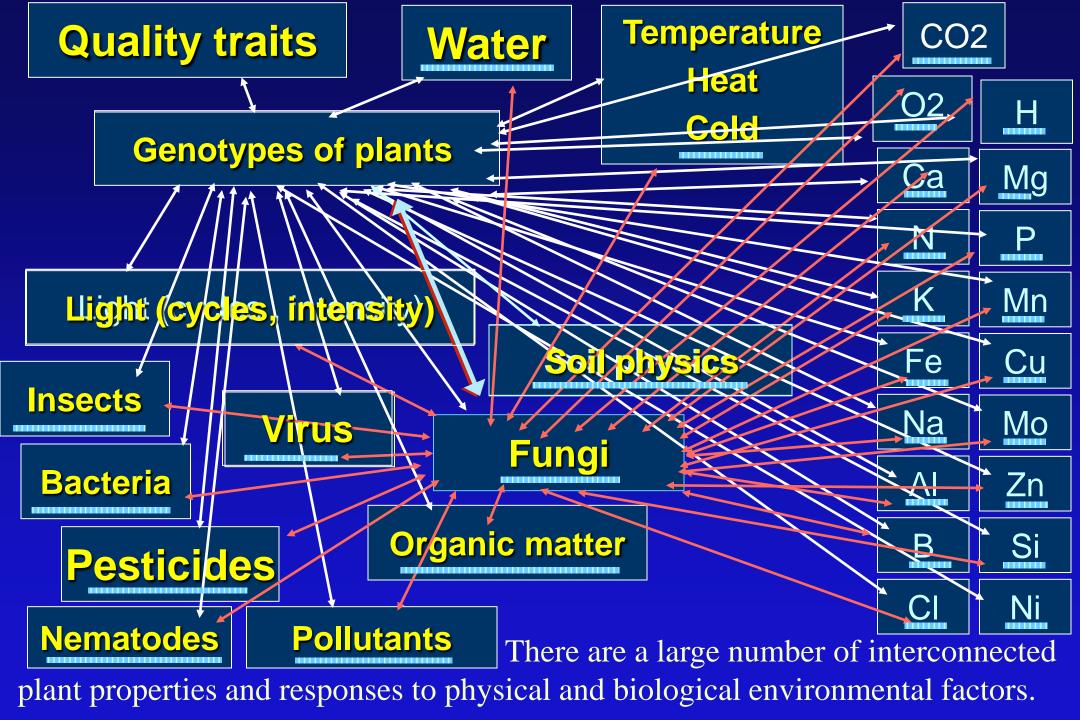


Anticipate!

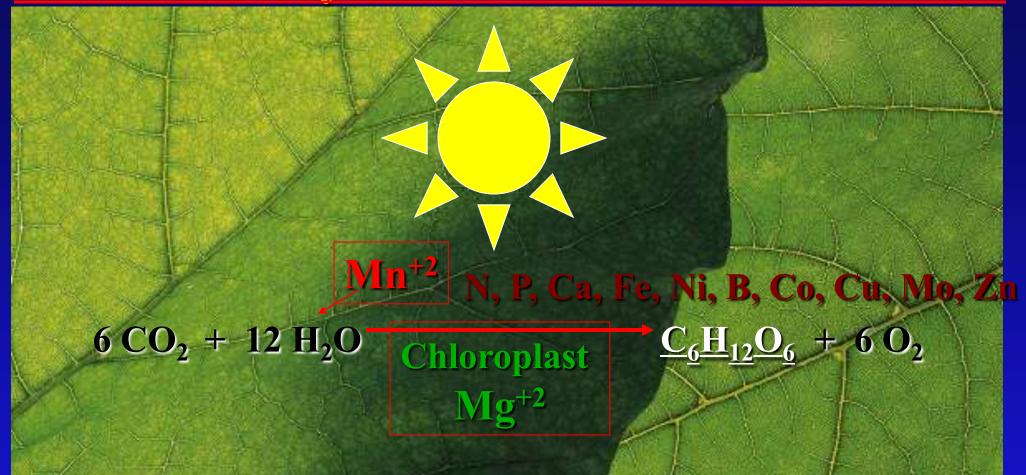
AVOID HAZARDS ← Bad Parenting!

Understanding Glyphosate and Glyphosate-resistant Crops Impact on Nutrition, Disease & Sustainability

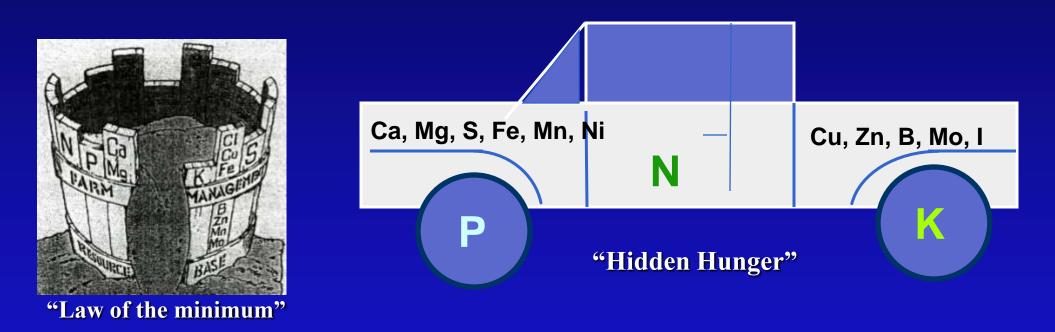
- Background
- Understanding glyphosate What it is and how it works
- Understanding glyphosate-resistance
 What it is and what it doesn't do
- Recognizing the interactions
 Symptoms nutrition, disease
- Remediation
- The bigger picture Food/Feed nutrition and safety



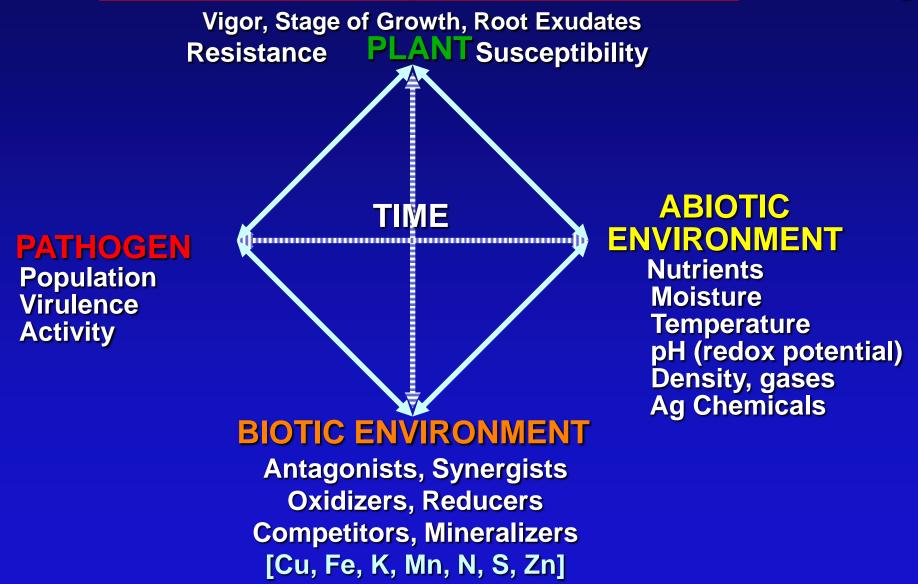
The Importance of Reducing Stresses



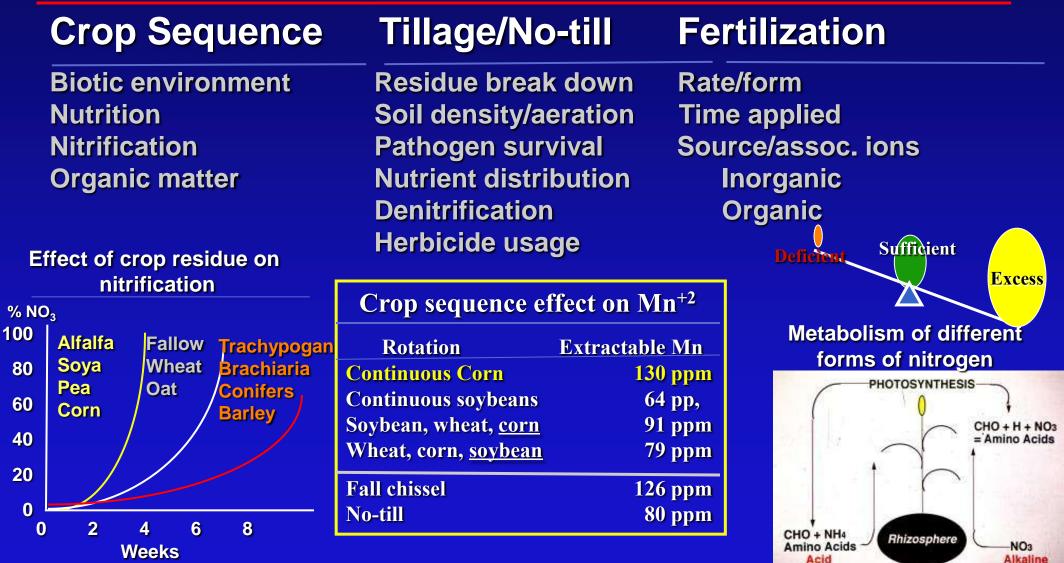
Potential - Stresses = Yield


There is no free lunch!

Photosynthesis and N-fixation



The Harvest is SUGAR and PROTEIN NUTRIENT BALANCE IS IMPORTANT BECAUSE EACH ELEMENT FUNCTIONS AS PART OF A DELICATELY BALANCED, INTERDEPENDENT SYSTEM WITH THE PLANT'S GENETICS AND THE ENVIRONMENT



Nutrient *BALANCE* may be a matter of <u>root function!</u> *"The roots may be the root of the problem!" "The weak link may be underground!"*

Interacting Factors Determining Nutrient Availability and Disease Severity

Changes in Agricultural Practices Change the Interactions

Factors Affecting N Form, Mn Availability and Severity of Some Diseases*

Soil Factor or Cultural Practice	Nitrification	Effect on: Mn Availability	Disease Severity
	_		
Low Soil pH	Decrease	Increase	Decrease
Green Manures(some)	Decrease	Increase	Decrease
Ammonium Fertilizers	Decrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibitors	Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
Glyphosate		Decrease	Increase
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed	Increase	Decrease	Increase

*Potato scab, Rice blast, Take-all, Phymatotrichum root rot, Corn stalk rot

Mn Sufficiency* Range for Agronomic Crops

Crop	Range	Crop	Range
Barley	25-100	Sorghum	6-190
Bean	20-100	Soybean	20-100
Canola	25-250	Sugar beets	26-360
Corn	15-300	Sugar cane	25-400
Cotton	25-350	Sunflower	50-1000
Oats	25-100	Tobacco	26-400
Peanut	60-350	Tomato	25-35
Rice	150-800	Wheat, spring	25-100
Rye	14-45	Wheat, Winter	16-200

Depends on: cultivar efficiency, growth stage, soil physical and biological environment After Bennett, 1994; Mills and Jones, 1996

Understanding the Characteristics of Glyphosate Glyphosate has Changed Agriculture for 30+Years

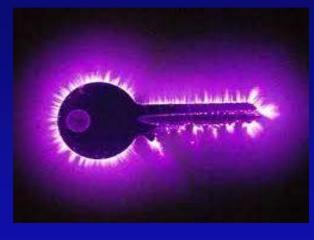
A strong chemical chelator Chelates minerals in the spray tank Chelates minerals in the plant Chelates minerals in the soil Reduces: B, Ca, Co, Cu, Fe, K, Mg, Mn, Ni, Z Non-specific herbicidal effect

Glyphosate

Chelating stability constants of glyphosate

		[ML]	[MHL]	[ML2]
let	al ion	[M][L]	[M][H][L]	[M][L2]
	Mg2+	3.31	12.12	5.47
	Ca2+	3.25	11.48	5.87
	Mn2+	5.47	12.30	7.80
'n	Fe2+	6.87	12.79	11.18
	Cu2+	11.93	15.85	16.02
	<u>Fe3+</u>	<u> 16.09</u>	<u> 17.63</u>	<u>23.00</u>

Glyphosate Immobilizes Manganese in Soybean

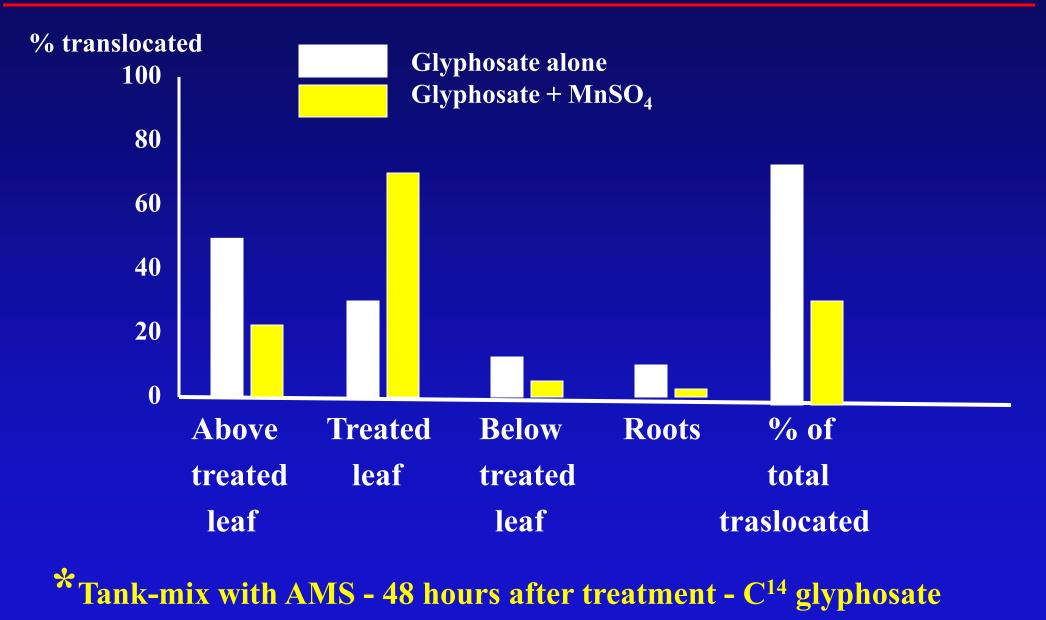

Glyphosate + Zn tank mix

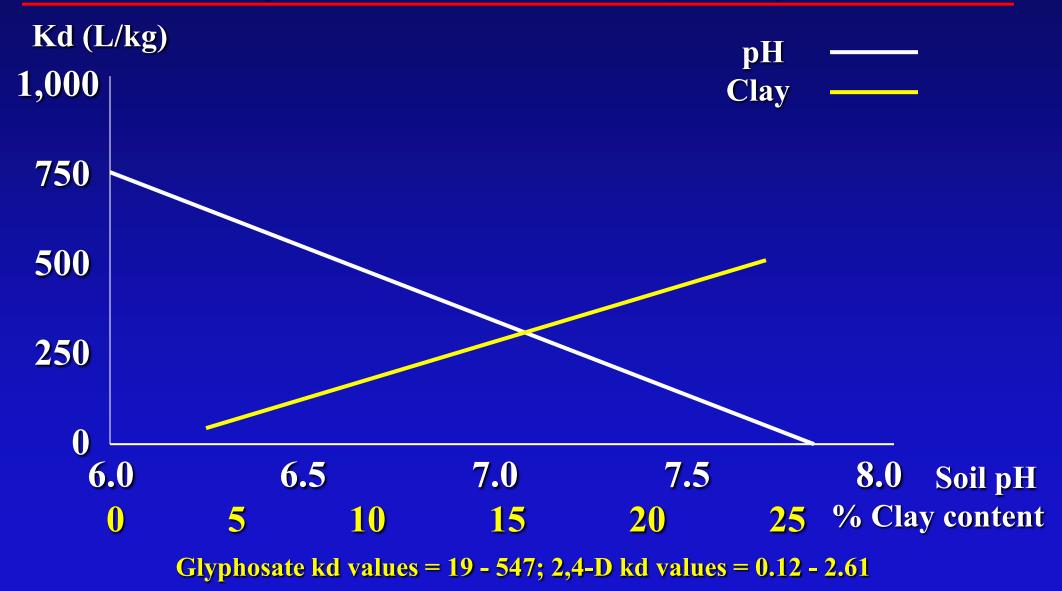
Nutrients are:

Components of plant parts as well as

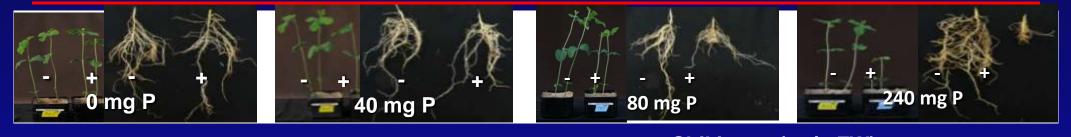
Activators,

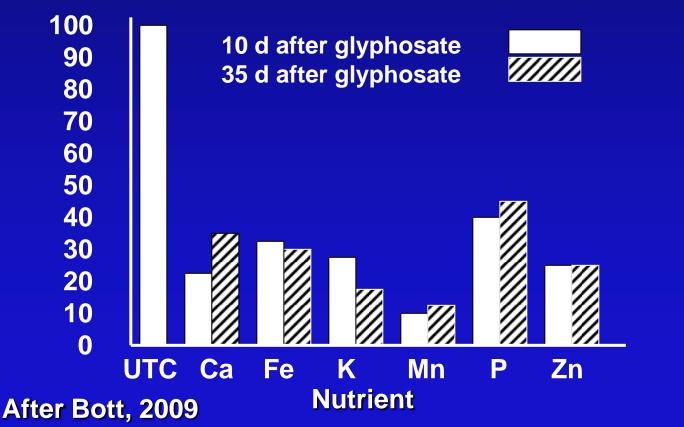
Inhibitors,

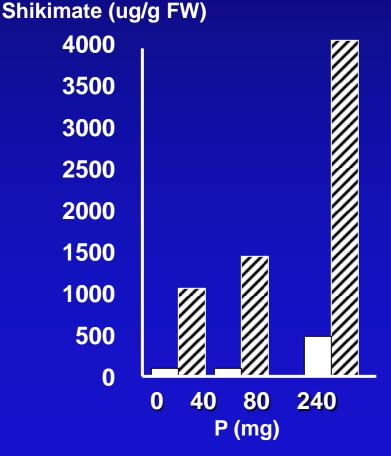

and Regulators


of Physiological Processes

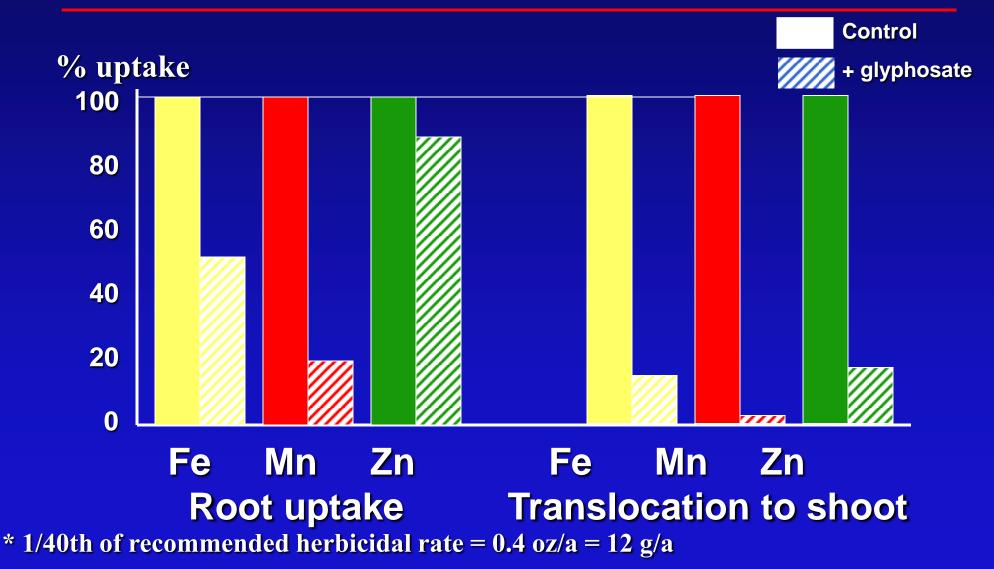
Many herbicides and pesticides are chelators


Effect of Mn* on translocation of Glyphosate


Effect of pH on Soil Sorption of Glyphosate (After Farenhorst et al, 2009)



Effect of Phosphorus Desorption of Glyphosate in Soil on Soybean growth and Nutrient Content



Effect of Residual or 'drift' Glyphosate on Percent Nutrient Uptake and Translocation by Plants After Eker et al 2006*

Foliar application of glyphosate

Systemic movement throughout the plant

Chelation of micronutrients

Intensifies stress

Accumulation of glyphosate in soil (fast sorption; slow degradation)

Desorbed by phosphorus

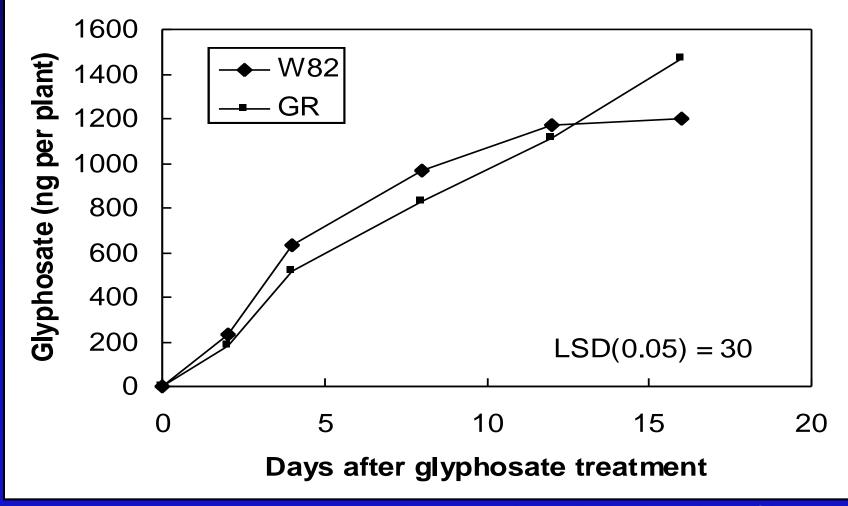
Residual soil and residue effects

Glyphosate toxicity to:

N-fixing microbes Bacterial shikimate pathway Mycorrhizae Biological control organisms Earthworms PGPR organisms Accumulation of glyphosate in meristematic tissues (shoot, reproductive, and roots)

Translocation of glyphosate from shoot to root and release into the rhizosphere

Toxicity to root tips by glyphosate or its toxic metabolites (e.g. AMPA)


> **Compromise of plant** defense mechanisms

Promotion of soil-borne organisms: Soilborne pathogens - DISEASE Nutrient oxidizers (Fe, Mn, N) Microbial nutrient sinks (K, Mg)

Reduced availability or uptake of essential nutrients (Cu, Fe, K, Mg, Mn, N, Zn)

Schematic of glyphosate interactions in soil

Cumulative glyphosate release in root exudates of GR Soybean

Kremer et al. Int. J. Environ. Anal. Chem. 85:1165, 2005

Mn Oxidation/Reduction in Soybean Rhizosphere Soil

Fungal Mn oxidation in soil (increased virulence)

Manganese Oxidation in Soybean Rhizosphere

In soybean rhizosphere soil (3 wks after glyphosate applied):

Mn Reducing Organisms Oxidizing Organisms

Control (no glyphosate) 7,250*

+ Glyphosate 740

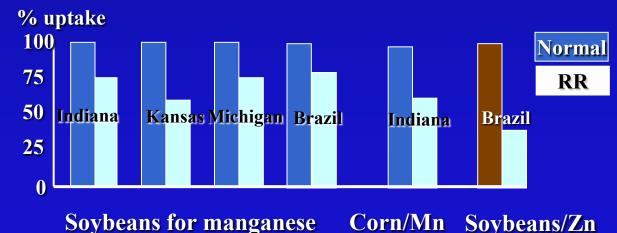
*Colonies per gram of soil

750

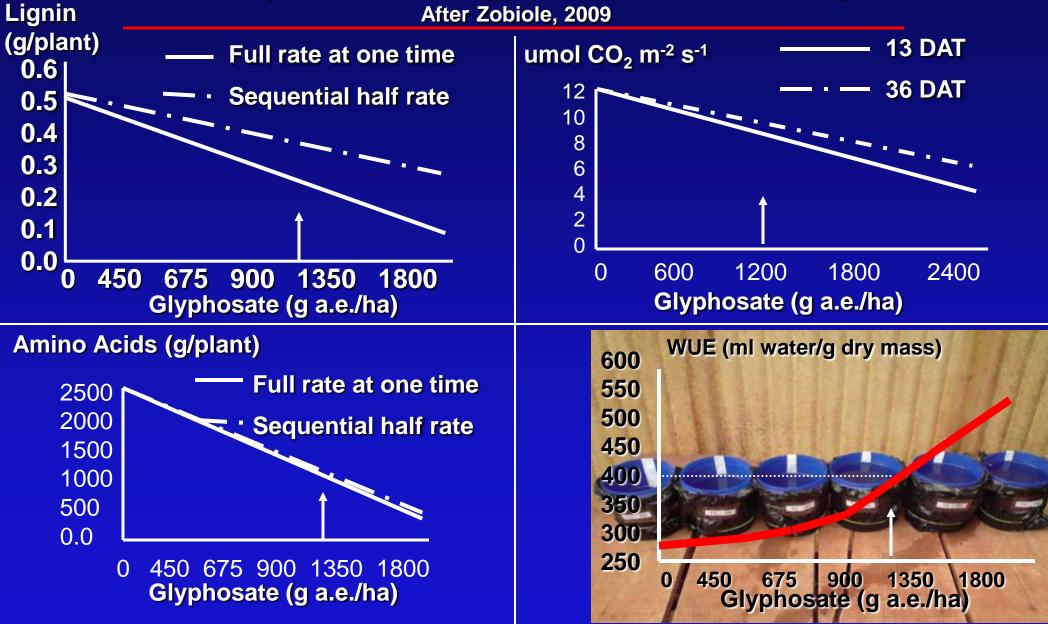
13,250

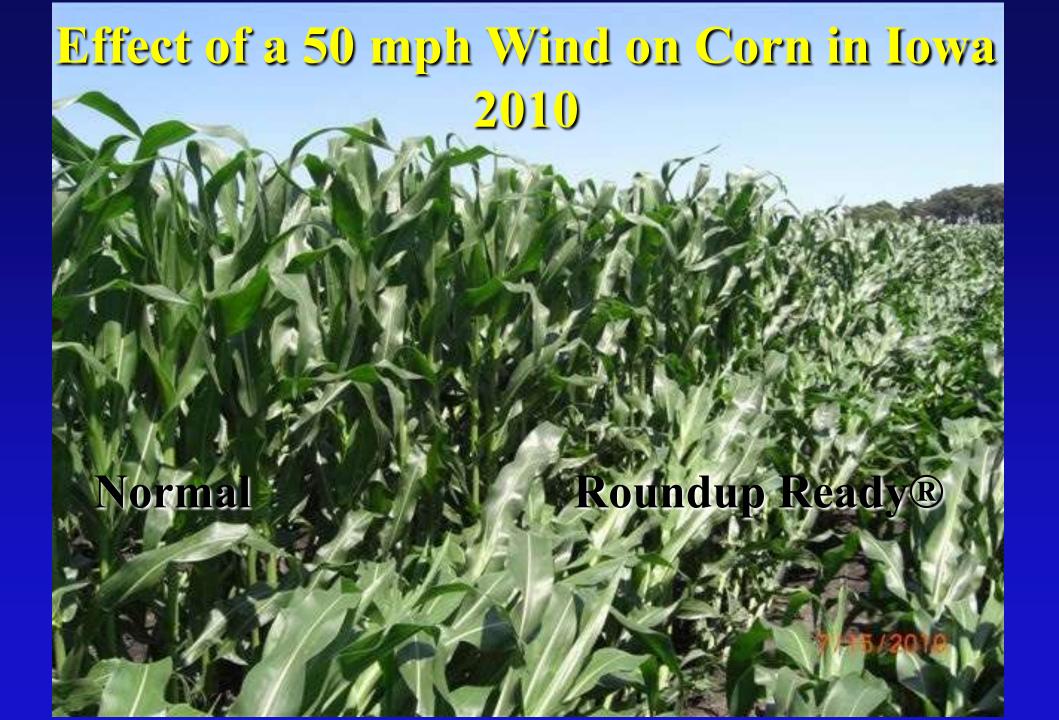
What's Special About Glyphosate Toleran (Roundup Ready® Genes)

[Greatly expanded usage of glyphosate]

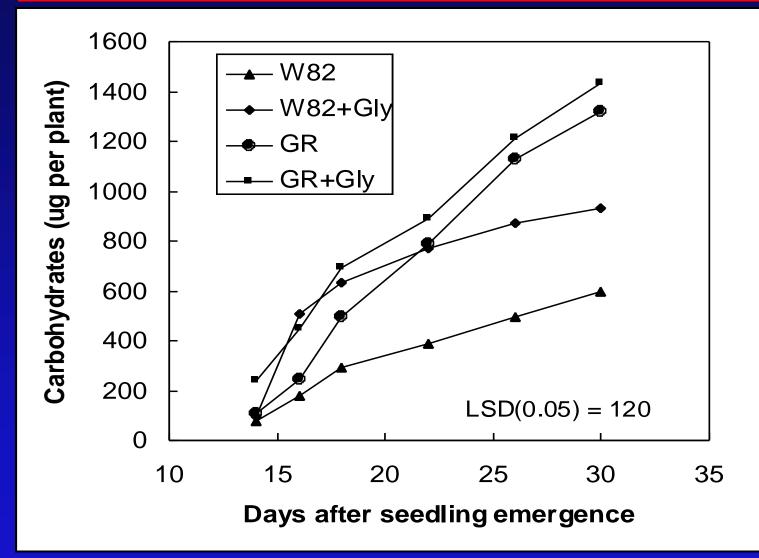

The technology inserts an alternative EPSPS enzyme that is not blocked by glyphosate in *mature* tissue

• There is nothing in the RR plant that operates on the glyphosate applied to the plant!

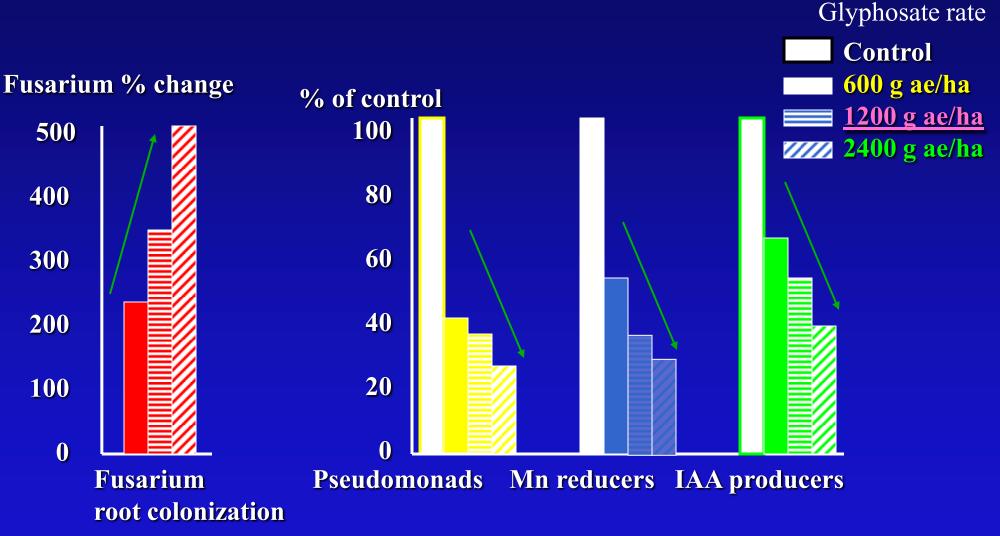

- Glyphosate chelation is not selective it immobilizes nutrients
 - Ca, Co, Cu, Fe, K, Mg, Mn, Ni, Zn
- Reduces nutrient uptake


Can cause a"Yield Drag"

 It is there for the life of the plant

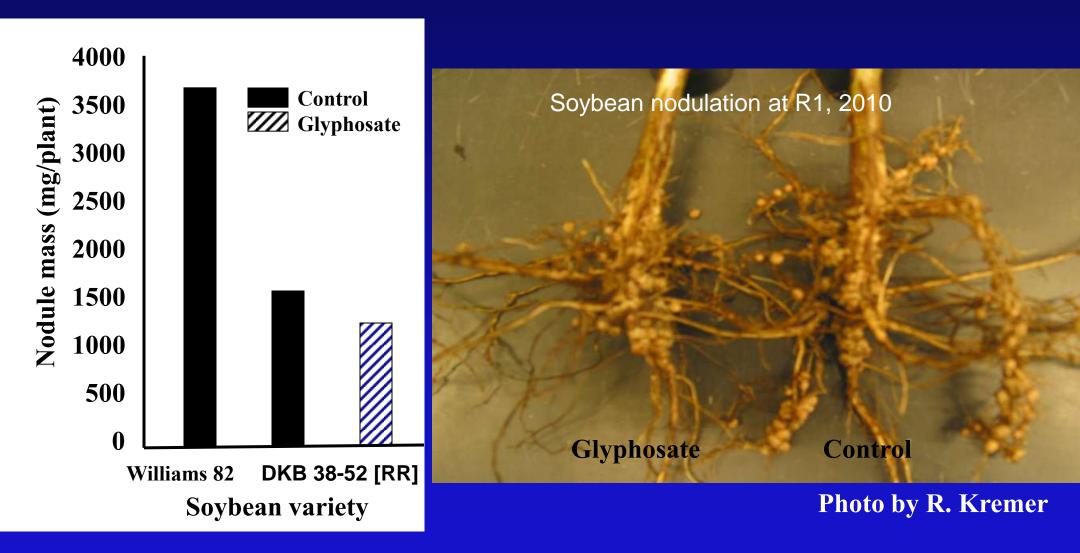


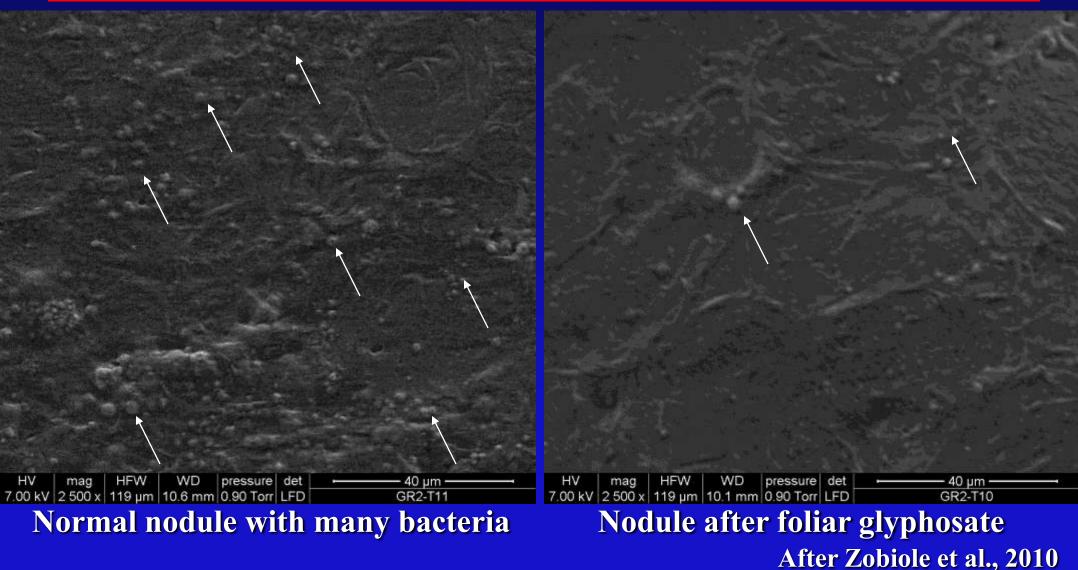
Effect of Glyphosate on Lignin, AA, Water Use Efficiency, and Photosynthesis of 'Glyphosate-Resistant' Soybeans



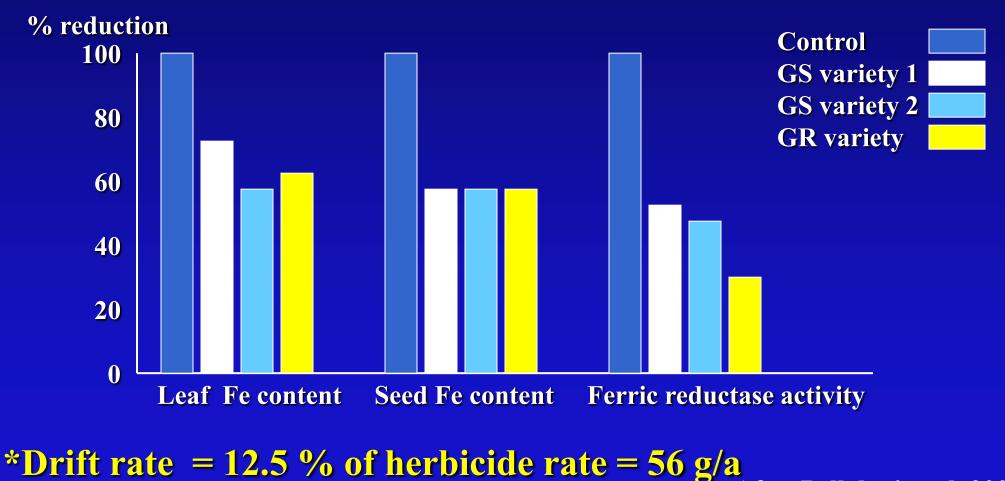
Cumulative carbohydrate released in exudates by GR soybean

(Kremer et al. Int. J. Environ. Anal. Chem. 85:1165, 2005)


Microbiocidal Activity of Glyphosate


After Zobiole et al., 2010

Effect of the RR Gene & Herbicide on Root Nodule Mass


After Kremer & Means, 2009

Effect of Glyphosate on Nodule *Bradyrhizobium on Roundup Ready*® *Soybeans*

Effect of Glyphosate Drift* on Soybean Leaf and Seed Iron & Ferric Reductase Activity

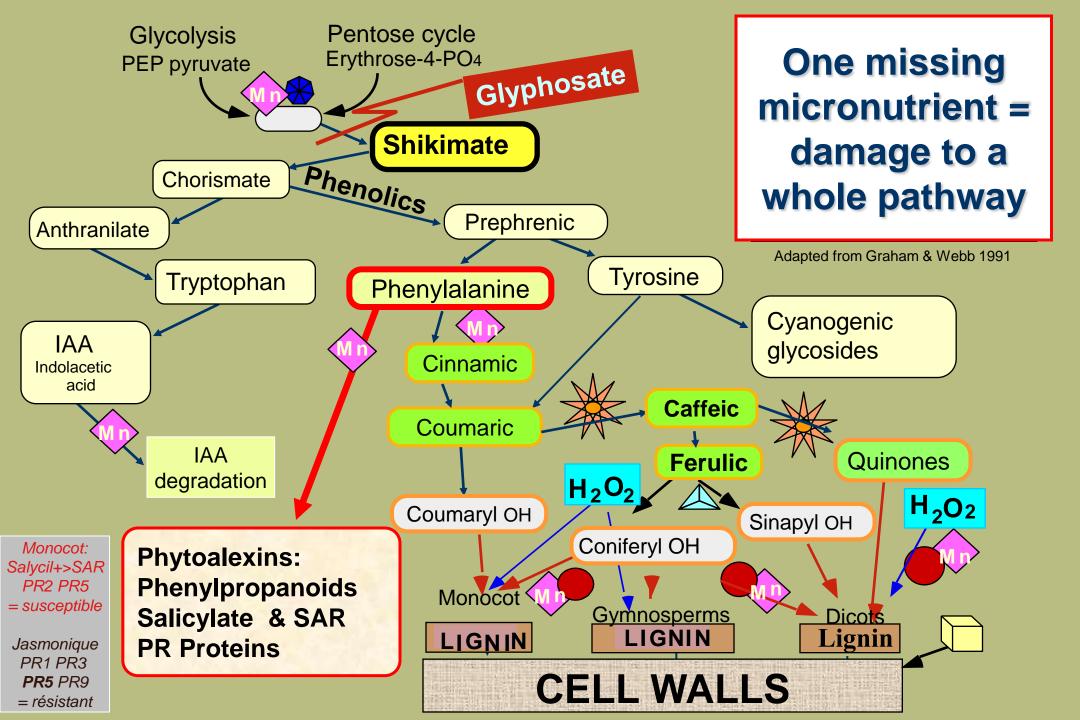
After Bellaloui et al, 2009

Reduced Nutrient Efficiency of Isogenic RR Soybeans (After Zobiole et al, 2008, 2009)

Isoline	Tissue:	Mn %	Zn %	
Normal		100	100	
Roundup	Ready©	83	53	
RR + glyp	hosate	76	45	

Copper, iron, and other essential nutrients Were also lower in the RR isoline and reduced further by glyphosate!

<u>% Mineral Reduction</u> in Tissue of Roundup Ready® Soybeans Treated with Glyphosate


Plant tissue	Ca	Mg	Fe	Mn	Zn	Cu
Young leaves	<u>40</u>	<u>28</u>	7	<u>29</u>	NS	NS
Mature leaves	30	34	<u>18</u>	<u>48</u>	30	27
Mature grain	<u>26</u>	<u>13</u>	<u>49</u>	<u>45</u>	>	

Reduced:Yield26%Biomass24%

After Cakmak et al, 2009

Importance of High Nutrient Seed After Andre Comeau, 2008

Herbicide action is by soil-borne fungal pathogens Glyphosate Increases Disease Susceptibility

GlyphosateGlyphosateNo glyphosateSterile soilField soilControl

Effect of glyphosate on susceptibility to anthracnose. A) hypersensitive response; B) non-limited response after glyphosate is applied.

After Rahe and Johal, 1988; 1990; See also Johal and Huber, 1999; Schafer et al, 2009.

Role of Soil Pathogens in Response to Glyphosate

 Fusarium and Pythium readily colonized susceptible giant ragweed roots when treated with glyphosate

 Resistant Giant Ragweed in unsterile soil were killed by a 4x rate of glyphosate, yet susceptible biotypes were not killed with the same rate in sterile soil.

- Dry weight of susceptible biotypes treated with Ridomil Gold was not changed by glyphosate
- Resistant giant ragweed biotypes were resistant to *Pythium*
- Glyphosate increased susceptibility to *Pythium*

Glyphosate susceptible biotype 4 DAT

Pythium	Pythium +	Glyphosate
Control	glyphoste	control

Glyphosate treated Susceptible biotype Resistant biotype

Ridomil Ck Ridomil Ck Fungicide

Schafer et al, 2009, 2010

Some Plant Pathogens Increased by Glyphosate

Pathogen	Pathogen
Increased:Botryospheara dothideaCorynespora cassicolaFusarium spp.Fusarium avenaceumF. graminearumF. oxysporum f. sp cubenseF. oxysporum f. sp cubenseF. oxysporum f.sp. (canola)F. oxysporum f.sp. glycinesF. oxysporum f.sp. vasinfectumF. solani f.sp. glycinesF. solani f.sp. phaseoliF. solani f.sp. PisiGaeumannomyces graminisMagnaporthe grisea	Cercospora spp. Marasmius spp. Monosporascus cannonbalus Myrothecium verucaria Phaeomoniella chlamydospora Phytophthora spp. Phytophthora spp. Pythium spp. <u>Rhizoctonia solani</u> Septoria nodorum Thielaviopsis bassicola Xylella fastidiosa Clavibacter nebraskensis Xanthomonas sterwartii

("Emerging" and "reemerging diseases")

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms'

Some Diseases Increased by Glyphosate

Host plant	Disease	Pathogen	bi ()
Apple	Canker	Botryosphaeria dothidea	
Banana	Panama	Fusarium oxysporum f.sp. cubense	VAV /
Barley	Root rot	Magnaporthe grisea	
Beans	Root rot	Fusarium solani f.sp. phaseoli	
Bean	Damping off	Pythium spp.	
Bean	Root rot	Thielaviopsis bassicola	EV32
Canola	Crown rot	Fusarium spp.	
Canola	Wilt	Fusarium oxysporum	
Citrus	CVC	Xylella fastidiosa	
Corn	Root and Ear rots	Fusarium spp.	
Cotton	Damping off	Pythium spp.	
Cotton	Bunchy top	Manganese deficiency	Eusarium seab
Cotton	Wilt	F. oxysporum f.sp. vasinfectum	Fusarium scab
Grape	Black goo	Phaeomoniella chlamydospora	
Melon	Root rot	Monosporascus cannonbalus	
Soybeans	Root rot, Target spot	Corynespora cassicola	
Soybeans	White mold	Sclerotina sclerotiorium	
Soybeans	SDS	Fusarium solani f.sp. glycines	
Sugar beet	Rots, Damping off	Rhizoctonia and Fusarium	
Sugarcane	Decline	Marasmius spp.	
Tomato	Wilt (New)	Fusarium oxysporum f.sp. pisi	
Various	Canker	Phytophthora spp.	1 AT
Weeds	Biocontrol	Myrothecium verucaria	G III R
Wheat	Bare patch	Rhizoctonia solani	· ()
Wheat	Glume blotch	Septoria spp.	
Wheat	Root rot	Fusarium spp.	
Wheat	Head scab	Fusarium graminearum	Take-all root rot
Wheat	Take-all	Gaeumannomyces graminis	

Effect of Glyphosate on Soybean Root Colonization by Fusarium (observed consistently, 1997-2007)

14 August 2000

+40 Days Post-application

+ Glyphosate

No herbicides

After Kremer, 2010

Impact of Glyphosate on Take-all

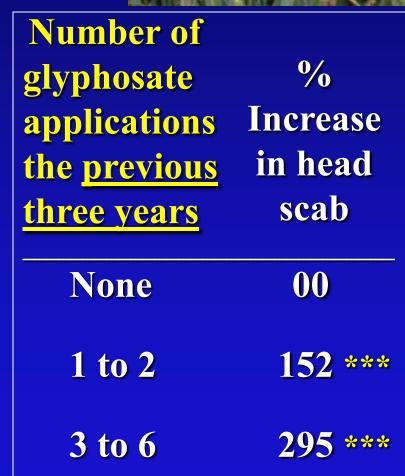
Soybean herbicide plot Transient Mn immobilization In tissue with glyphosate

Conventional

Vinter wheat grown after RR soybeans

Impact of Glyphosate on Take-all

Take-all of wheat after glyphosate to RR beans


After glyphosate

No glyphosate

Factors Predisposing to Fusarium Head Scab (*Fusarium* spp.; *Gibberella zeae*)

- ✓ Environment was the most important factor in FHB development in eastern Saskatchewan, from 1999 to 2002
- Application of glyphosate formulations was the most important agronomic factor associated with higher FHB levels in spring wheat
- Positive association of glyphosate with FHB was not affected by environmental conditions as much as that of other agronomic factors...

(Fernandez et al. 2005, *Crop Sci. 45: 1908-1916*) (Fernandez et al., 2007, Crop Sci. 47:1574-1584)

Glyphosate Predisposition to SDS, IA, 2010

No Glyphosate burn down

Glyphosate burn down

Effect of Residual Glyphosate on RR2Y Soybeans, 2010*

Scenarios -Substrates & glyphosate release from grass roots; soil fungi proliferate on grass AND soybean seedling roots; effects of soil residual glyphosate.

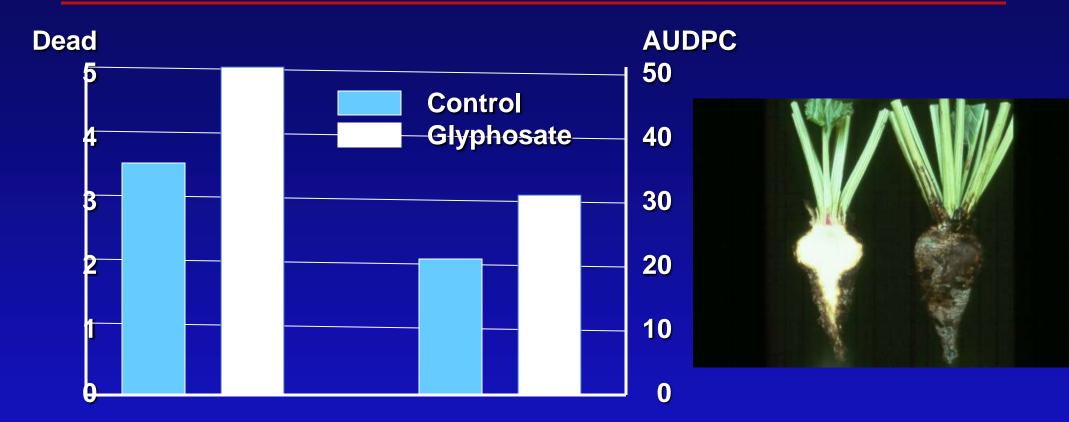
* Asgrow RR2Y

After Kremer, 2010

Corynespora Root Rot

An extensive dark brown to black rotting of small lateral roots

Generally considered a root "nibbler"


Severe with glyphosate and especially near weeds killed by glyphosate
Dead ragweed

Long, multiseptate spores

Control Inoculated Inoculated + glyphosate

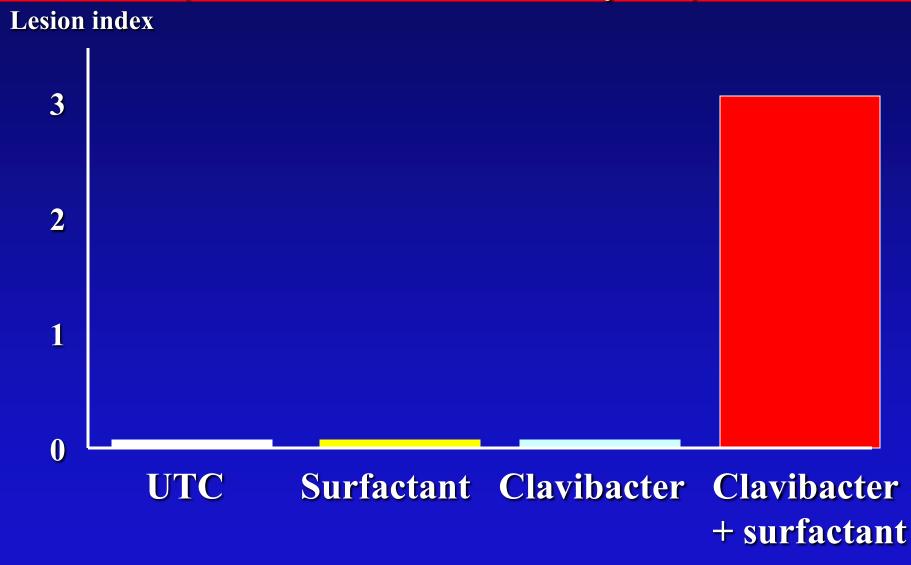
Corynespora cassiicola

Impact of Glyphosate on Sugar Beet Resistance

RhizoctoniaFusariumB4RR varietyB4RR variety

"Precautions need to be taken when certain soil-borne diseases are present if weed management for sugar beet is to include postemergence glyphosate treatments." Larson et al., 2006

A Rose Amongst the Thorns" - SDS of Soybeans, 2010


Same Water, Same Heat, Same Light, Same Soil

Non-GMO, No glyphosate

GMO, plus glyphosate

Photo: A. Bandie

Effect of Surfactant on Goss' Wilt Infection (Goss' wilt resistant corn hybrid)

Early death of wheat After RR RR soybean soybean + No glyphosate glyphosate

Take-all

Scal

Control

Soybean

Recognizing the

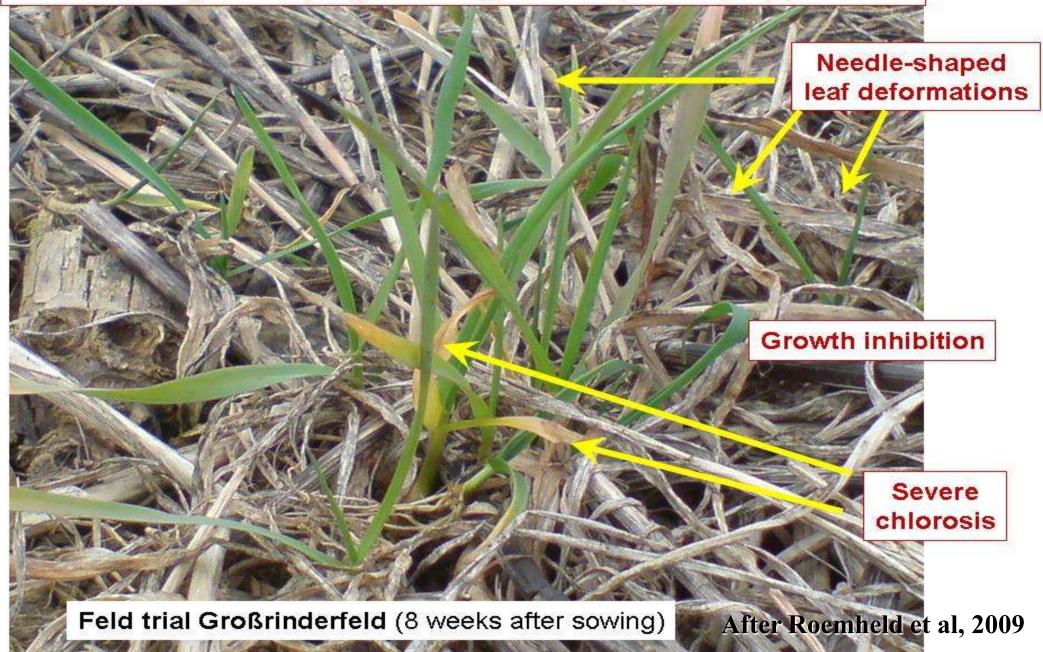
Inoculated Inoculated + glyphosate

Corynespora root rot

Glyphosate

Glyphosate

Some SYMPTOMS of Glyphosate Damage (Sub-herbicidal depending on rate and length of exposure)


- Low vigor, stunting, slow growth
- Leaf chlorosis (yellowing) complete or between the veins
- Leaf mottling sometimes with necrotic flecks or spots
- Leaf distortion small, curling, strap, wrinkling, 'mouse ear'
- Abnormal stem proliferation ('witches broom')
- Bud, fruit abortion
- Retarded regrowth after cutting (alfalfa, perennial plants)
- Lower yields, lower mineral value
- Predisposition to infectious diseases NUMEROUS!
- Predisposition to insect damage
- Induced abiotic diseases drought, winter kill, sun scald
- Root stunting, poor growth, inefficient N-fixation and uptake
- **Solution of Content o**

Effect of Late Application of Glyphosate

"Bubble kernel"

After E. Nafziger, Univ. Illinois, 2010

Close up of field symptoms of plant damage in treatments with short waiting times (1 d) after Glyphosate pre-crop application

Effect of Planting Delay after Glyphosate (Residual Glyphosate in Soil)

Winter Wheat

14 days after glyphosate 'burn-down'

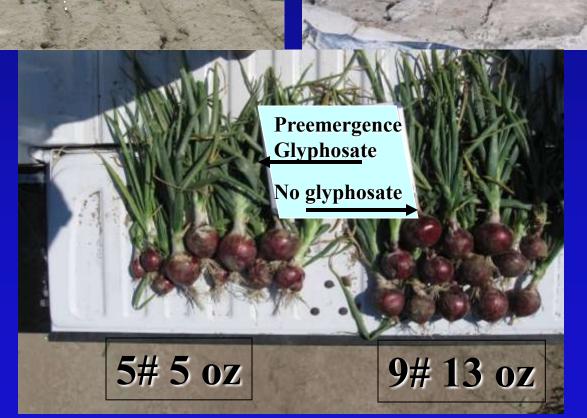
2 days after glyphosate 'burn-down' Weiss et al., 2008 Effect of Residual Soil Glyphosate on Wheat, WI, 4-27-11 (Adjacent fields, same variety, planted same day, same fertilizer)

Organic Field

Six years of glyphosate 'burndown' use

Long-term Effect of Glyphosate

Field observations in winter wheat production systems in 2008 & 2009 point to potential negative side-effects of long-term glyphosate use.



PreemergenceNoglyphosateglyphosate

Preemergence No glyphosate glyphosate

Poor

Bulking

Effect of Residual Glyphosate in Soil on Plant Growth

Soybeans and potatoes on the left side were planted after hand weeding;
Soybeans and potatoes on the right side were planted six days after glyphosate was applied to hand weeded soil.

After Olson, 2011

Failure to	'Bulk' of R	usset P	otatoes
Glyphosate frequency	How applied	No. growers	% Potatoes over 10 oz
None in the previous 2 yrs	None	5	35.3
1-2 in the previous 2 yrs	Burn down	17	20.2
Preceding year	RR crop	5	5.4
	Parent plant with glyp Daughte	phosate drift er seed pieces	

Special Considerations in Fertilizing RR Crops

Two factors: 1) Chemical; 2) gene

1. Providing nutrient availability for yield and quality

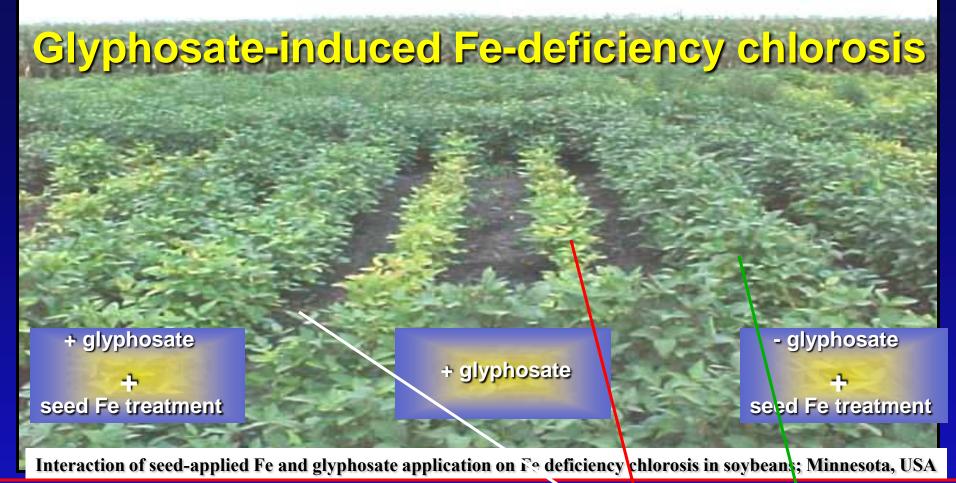
Compensate for reduced plant efficiency Compensate for reduced soil availability [Timing and formulation are important]

2. Detoxifying residual glyphosate

In meristematic root, stem, flower tissues, etc. In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.) Disease control related (nutrition, pathogen antagonists, etc.) Biological amendment (N-fixers, PGPRs, etc.)


4. Increasing plant resistance to diseases and toxins Nutrient-related pathways (Shikimate, AA, CHO, etc.)

5. Judicious use of glyphosate

Yield Response of Roundup Ready® Soybeans to Micronutrients

	Indiana	Michigan	Kansas	<u>Minnes</u> ota
Treatment		Yield (b	u/a)	
Untreated	46	24	77	33
Glyphosate only	57	33	65	8
Glyphosate + Micronutrient	75 Mn	56 Mn	78 Mn	19 Fe

	ual chloro green; 5			n yield u/a)
	- Fe	+ Fe	- Fe	+ F <mark>e</mark>
Control (no herbicide)	3.1	2.8	33	56
Glyphosate	3.7	3.3	8	19

Jolley et al., 2004, Soil Sci. and Plant Nutrition 50:973-981

Effect of Glyphosate on Roundup Ready© Corn

Colorado State	University,	2007
-----------------------	-------------	------

Mike Bartolo, Sr. Res. Scientist

Treatment	Yield (bu/a)	% of control		
Untreated*	234 a	100		
Glyphosate**	195 d	83		
<mark>Glyphosate</mark> + Zn, Mn	221 b	94		
Glyphosate + Mn, Zn, Fe, B	208 c	89		
*Hand weeded, **1 lb a.i. + 1 pt AMS per acre Notes: UTC = genetic potential (with RR gene)				
Glyphosate reduces genetic potential 39 bu/a				

Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less

Response of Roundup Ready © Corn to Zn & Mn, 2007* NDSU Carrington			
Yield (bu/a)			
144			
156			
158			
173			
175			
e 167			

* All treatments received glyphosate

Herbicide Affects on RR Corn Yield Indiana, 2010

RR Corn Hybrid

Herbicide	6733HXR	6179VT3	5442VT3	5716A3
Surestart (11")	266*	216	223	219
Cadet (V6)	227	219	219	213
Laudis (V6)	224	218	214	214
Integrity (pre-E) 231	217	215	204
Glyphosate (V6)) 212	207	206	210
Steadfast (V6)	207	204	201	196
Status (V6)	187	195	193	192

*125.6 % of glyphosate yield (yields in bu/a - rounded) All plots were hand weeded

Glyphosate & Manganese Effects on Cotton

Untreated Check (conventional herbicide)

Glyphosate @ 22 oz/ac plus ammonium sulfate (AMS)

Effect of glyphosate and Manganese on Cotton Yield (Texas)

Treatment	% chlorotic plants	# seed cotton
Conventional herbicide	e 5	4885
Glyphosate	97	2237
Glyphosate + Mn, Zn after Ronnie P	2 hillips, 2009	4693

Effect of Tillage on Glyphosate Injury & Yield

Field History: 8 years Cons. Res. Program 2 qt blyphosate burndown 2008 1 qt glyphosate on RR corn 2009 1 qt glyphosate burndown 2010

No-tillFall chiselYield: 40 bu/a60 bu/a

Photos: Nesters Farm Services

Food and Feed Safety Concerns > Increased levels of mycotoxins Aris & Leblanc, 2011 - Fusarium toxins (DON, NIV, ZEA) Benachour et al, 2007 - Aflatoxins Carmen, et al., 2011 Fernandez, et al., 2009 > Nutrient deficiency Gasnier, et al., 2009 - Cu, Fe, Mg, Mn, Zn Heiman, 2010 Matzk et al, 1996 **Gene flow** Seralini et al., 2010, 2011 - Weeds **Smith**, 2010 - Soil microbes Walsh, et al., 2000 - Intestinal microbes Watts, 2009 > Direct toxicity of residual glyphosate - Infertility - endocrine system - Birth defects, teratogenicity - Cell death - Disease resistance > Allergenic reactions to foreign proteins

Mycotoxins in Straw and Grain

Fusarium spp. act synergistically to cause death of glyphosate-treated plants

Glyphosate-induced root colonization by *Fusarium* spp.

Toxins (DON, ZEA) produced in roots is translocated to stem and grain - Well above 'clinically significant' levels!

 Toxin concentrations not always correlated with *Fusarium* damaged grain (FDG) - [Strobilurin fungicides increase mycotoxins]

Head must be protected for 18 days (10 days after anthesis)

Deoxynivalenol and Zaeralenone						
Concentrations in plant parts						
Toxin (ppm) Grain Chaff Straw						
Deoxynivalenol 4.7 16.9 3.5						
Zaeralenone	4.4	42.9	55.5			

Proc. Natl. FHB Forum 2009, Orlando, FL

% Reduction in Alfalfa Nutrients by Glyphosate*

Nutrient	% reduction compared with Non-RR
Nitrogen	13 %
Phosphorus	15 %
Potassium	46 %
Calcium	17 %
Magnesium	26 %
Sulfur	52 %
Boron	18 %
Copper	20 %
Iron	49 %
Manganese	31 %
Zinc	18 %

*Third year, second cutting analysis; Glyphosate applied one time in the previous year

Manganese Sufficiency in Bovine Fetus Livers (After Schefers, 2011)

Fetal	Mn	Manganese level ³		
development	mean	Deficient	Normal	Above
Deformed	0.88 ppm	100 %	0	0
'Normal'	1.2 ppm	63 %	29 %	7 %
		•	• •	

*Reference range: 1.75-2.8 ppm wet weight

Feed Analysis:	Mean Mn	Range of samples
Shelled corn	15 ppm	0.01 - 57.65 ppm
Corn silage	37 ppm	0.01 - 89.43 ppm
Grass hay	50 ppm	0.01 - 125.20 ppm
Mixed haylage	57 ppm	0.55 - 113.45 ppm

Percent Decrease in Mineral Nutrients in Corn Silage - 2000 to 2010, Dairy One*

Mineral nutrient	Percent decrease
Calcium	22.0 % lower
Phosphorus	3.8 % lower
Magnesium	11.4 % lower
Potassium	16.1 % lower
Iron	5.2 % lower
Copper	9.6 % lower

*Based on 1629 samples

Stillborne Calf from Manganese Deficiency

U.S. Cattlemen's Association Statement to Congress

"Cattle ranchers are facing some puzzling – and, at times, economically devastating problems with pregnant cows and calves. At some facilities, high numbers of fetuses are aborting for no apparent reason. Other farmers successfully raise what look to be normal young cattle, only to learn when the animals are butchered that their carcasses appear old and, therefore, less valuable."

"The sporadic problem is so bad both in the United States and abroad that in some herds around 40-50 percent of pregnancies are being lost."

"Many pesticides and industrial pollutants also possess a hormonal alter ego."

"The viability of this important industry is threatened."

Source: Testimony of the Ranchers-Cattlemen Action Legal Fund, United Stockgrowers of America, to the Senate Agriculture Committee July 24, 2002.

Effect of the GM "Gene" Proteins in Corn/Soybeans on Pig Stomachs After Carman et al., 2011

Non-GMO Feed

GMO Feed

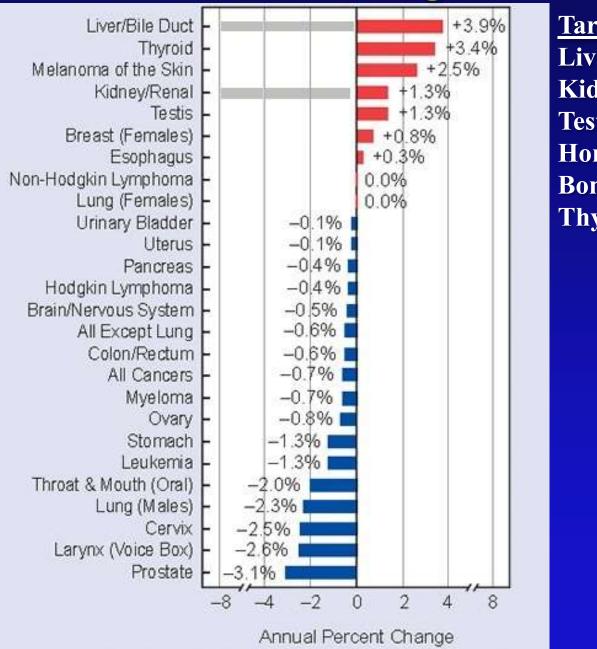
Normal color

Inflamed, irritated

Feed Source Effect on Stomach Liner Color, Carmen et al, 2010

And the Mice Prefer.....

GMO Corn


Non-GMO Corn

Direct Toxicity of Glyphosate

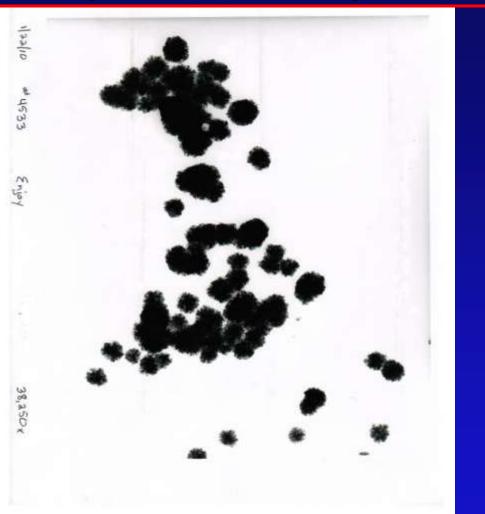
Rate (ppm) System affected	Reference
0.5	Human cell endocrine disruption	Toxicology 262:184-196, 2009
0.5	Anti-androgenic	Gasner et al, 2009
1.0	Disrupts aramatase enzymes	Gasnier et al, 2009
1-10	Inhibits LDH, AST, ALF enzymes	Malatesta et al, 2005
1-10	Damages liver, mitochondria, nuclei	Malatesta et al, 2005
2.0	Anti-Oestrogenic	Gasnier et al, 2009
5.0	DNA damage	Toxicology 262:184-196, 2009
5.0	Human placental, umbilical, embryo	Chem.Res.Toxicol. J. 22:2009
10	Cytotoxic	Toxicology 262:184-196, 2009
10	Multiple cell damage	Seralini et al, 2009
10	Total cell death	Chem.Res.Toxicol. J. 22:2009
All	Systemic throughout body	Andon et al, 2009
1-10	Suppress mitochondrial respiration	Peixoto et al, 2005
	Parkinson's	El Demerdash et al, 2001
POEA, AMPA even more toxic		Seralini et al, 2009

Annual % Change in Cancers

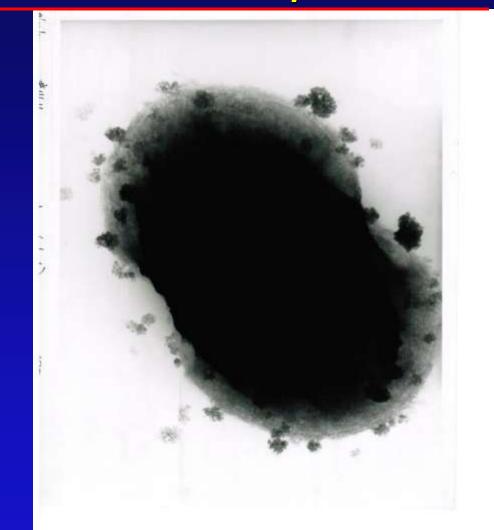
Target Tissues for glyphosate; Liver Kidney Testicle Hormone system Bone (Ca, Mn chelation?) Thyroid (Mn chelation?) Hello, my name is ______. I am a veterinarian in Michigan.

I am working with a sow herd that has had elevated death loss for over two years and very poor reproductive performance for the last 6-8 months. I have done extensive diagnostics (primarily at Iowa State) and can find nothing infectious that is routinely found to explain the problem.

I suspect there is a toxin involved; I have done extensive testing on liver, feed, and water but can find no evidence of those compounds either. We have had a few individuals mention that the use of GMO crops could be contributing to these problems.

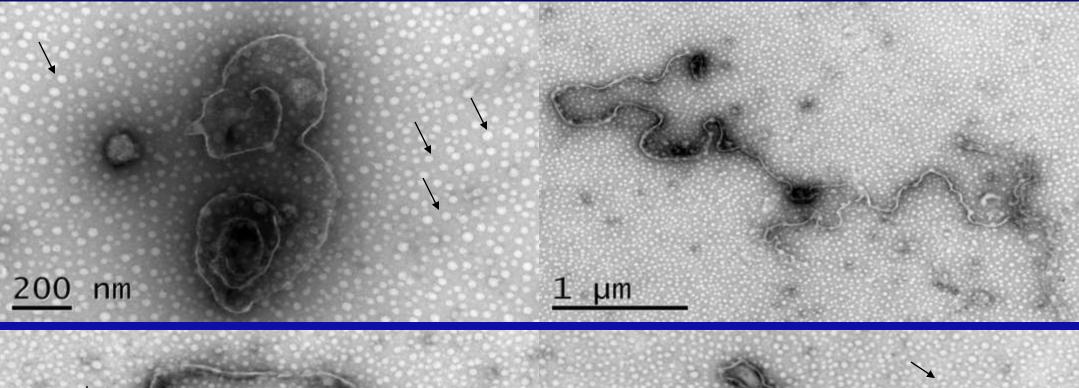

The producer recently saw your article to the secretary of agriculture and forwarded it to me. We are very intrigued by the organism you mention. Could you tell me if any laboratory is looking for this agent? How do we go about finding it? *We are at the end of our rope and cannot figure this out.* Any help you can give us would be greatly appreciated.

Late term Spontaneous Abortion' (Miscarriage)



'Fungus-like' Growth (transmission EM)

Size of organism compared with alfa-Streptococcus



38,250 X magnification

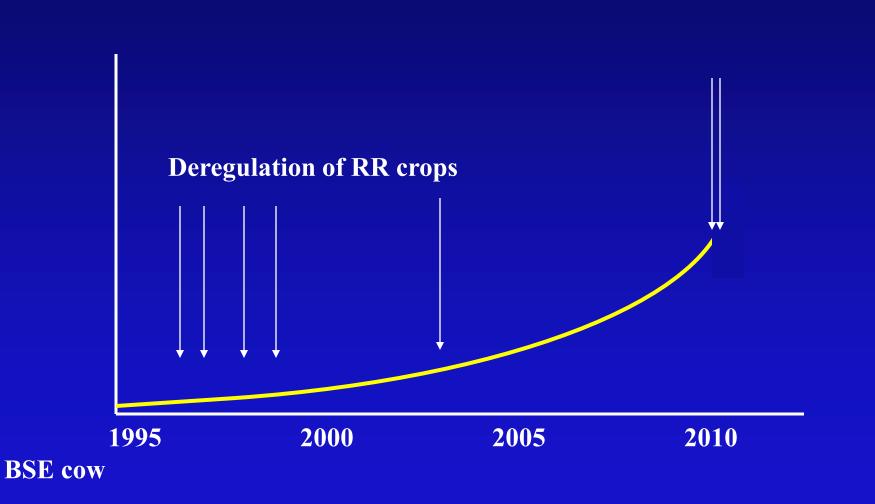
Size relative to gram⁺ bacterium

Suspect agent in Exported U.S. RR Soybean, 25,000X, 2010

Suspect Agent in Fungal Mycelium

Scanning Electron Microscope Image of the Suspect Agent from a 60-day old Equine Fetus with Classic Symptoms of the Abortion Syndrome

Low magnification of iregular circular bodies in aborted equine fetal tissue High magnification of iregular circular bodies in aborted equine fetal tissue

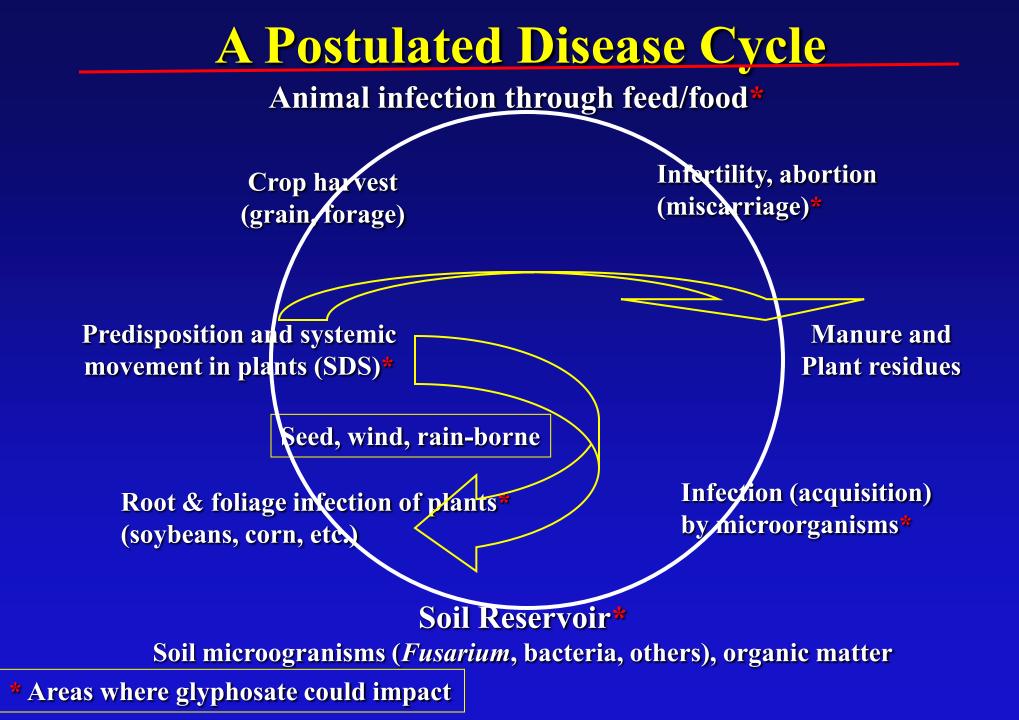

Filamentous Growth in Pure Culture

SEM 20,000X

Mag:20000 WD:15

μm

Generalized Graph of Incidence


Occurrence

•Verified in IA, IL, KY, MI, NE, ND, SD, WI

Sources: <u>'Environmental'</u>

Soybean meal Wheatlage, haylage, silage Corn leaves and silage SDS Soybean plants Oak 'scorch' leaves Manure Soil Animal tissue Placental tissue Amniotic fluid Semen Stomach contents Eggs Milk

Fusarium solani fsp glycines mycelium

Potential Interactions of 'new organism' with Glyphosate

Glyphosate affects plants (predisposes):

Inhibits plant defenses

Reduces nutrient content and efficiency [chemical and RR gene(s)]

Increases root colonization

Increases membrane permeability

Surfactant affect for penetration of natural openings and wounds

Glyphosate affects animals (predisposes):

Inhibits aramatose system – endocrine hormone system Toxic to liver, placental, testicular, and kidney cells Reduced defense - liver function [from lower Mn, etc. in feed]

• Glyphosate affects pathogens:

Stimulates growth and virulence (direct/indirect) Favors synergism, infection (as a carrier) Increases movement into plant tissues (water film for plant infection)

• Glyphosate affects the environment:

Toxic to soil microbes that constrain plant pathogens Micronutrient availability reduced

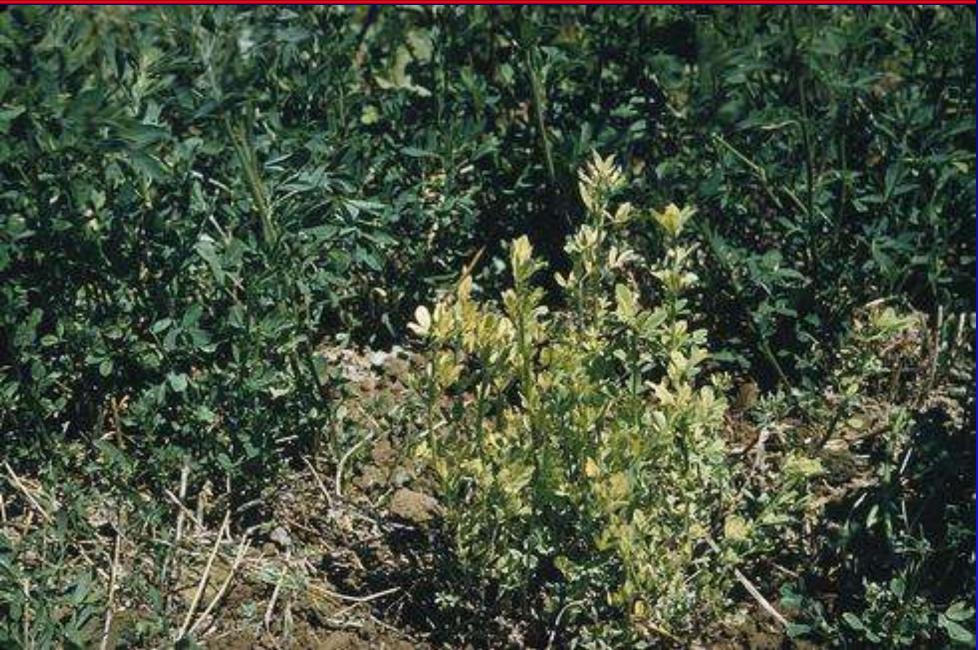
What has Changed?

• Change:

Increased disease New diseases Low mineral nutrition Resistant weeds

• Precedent:

Victoria blight (oats)
H. carbonum disease (toxin)
Texas male-sterile gene (corn leaf blight epidemic)
Glyphosate-resistance gene????
Glyphosate nullifies genetic resistance in sugar beets


• Why (vulnerability)?

Predisposition Direct toxicity Gene flow No relief - single source approach

Effect of Surfactants on Goss' & Stewart's Wilt*

Bacterial wilt of Alfalfa - Clavibacter insidiosum

Potential Far-Reaching Impact of Glyphosate

<u>Human</u>

Mineral malnourished, Allergies, Fertility, Disease MYCOTOXINS

Alzheimer's, gout, diabetes, viruses, Parkinson;s, etc.

Vegetables, fruits, grains Glyphosate

Lower nutrient minerals (Cu, Fe, Mg, Mn, Zn) Carriers for epiphytes (E. coli, etc.) (Changed epiphytic flora)

Mn Glyphosate (Chelation) [►]

Plants, feed

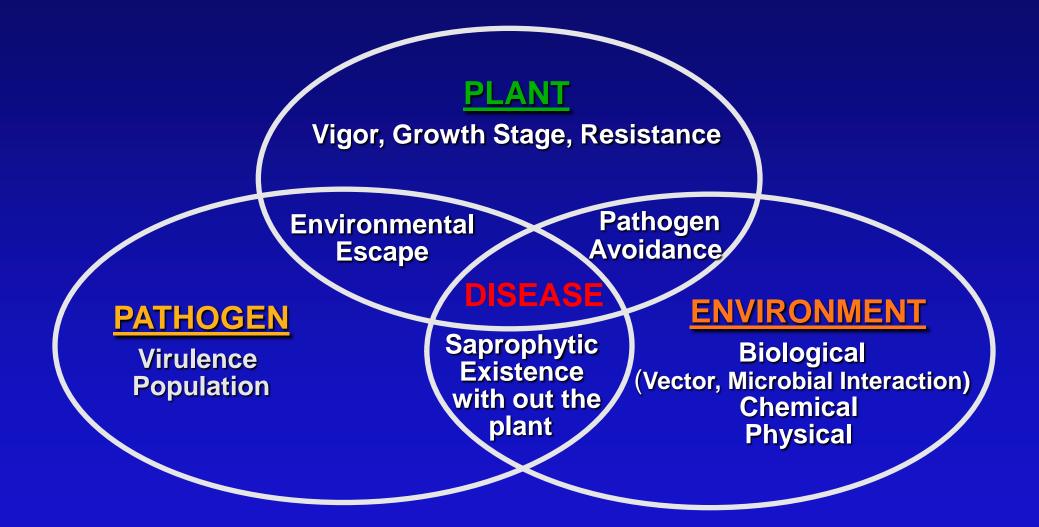
Lower nutrient minerals (Cu, Fe, Mn, Zn) Disease predisposition (Scab, take-all, CVC) Mycotoxins, glyphosate

Environment

Biological imbalance N fixation, Mn availability Potassium immobilization Biological controls GLYPHOSATE ACCUMULATION

Animals

Mineral malnourished Slow growth, Allergies, Disease <u>MYCOTOXINS</u> Scours, death, BSE, wasting, predisposition



Make Sure You Provide the Food!

The Interaction of Three Factors Over Time Determines if a Disease will be Latent or Severe

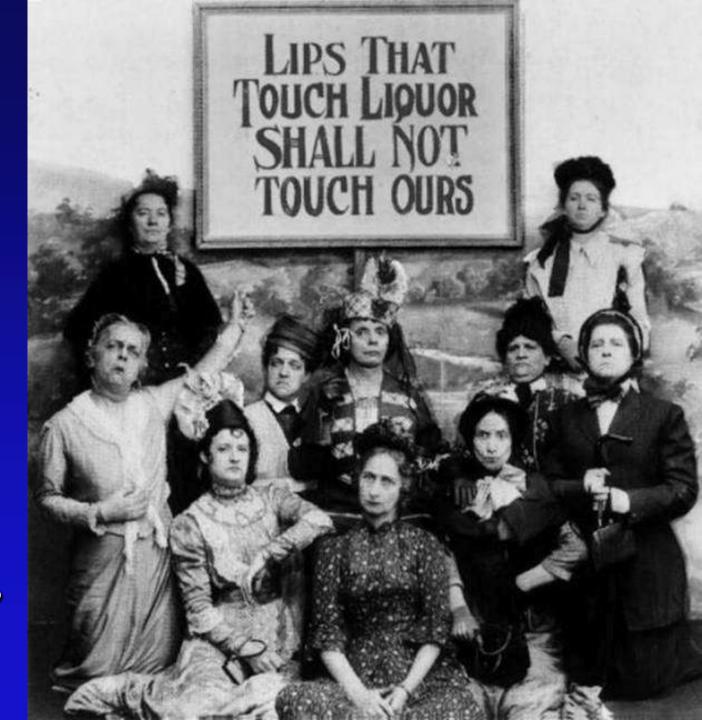
Tough Love Alternative to Spanking

When it comes to child discipline, most of us are looking for positive alternatives to spanking.

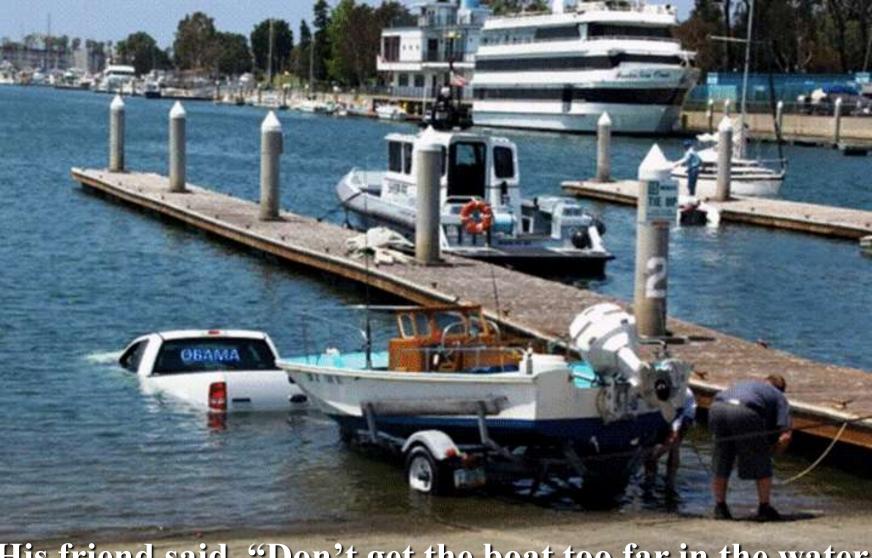
One that worked well when our child was having "one of those moments" was to take them for a car ride.

Some say it's the vibration from the car; others that its the time away from distractions such as TV, etc.

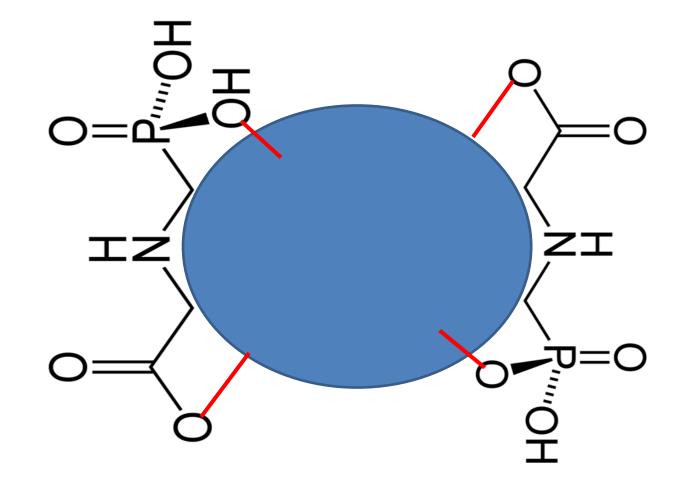
Either way, our kids usually calm down and behave after our car ride together.

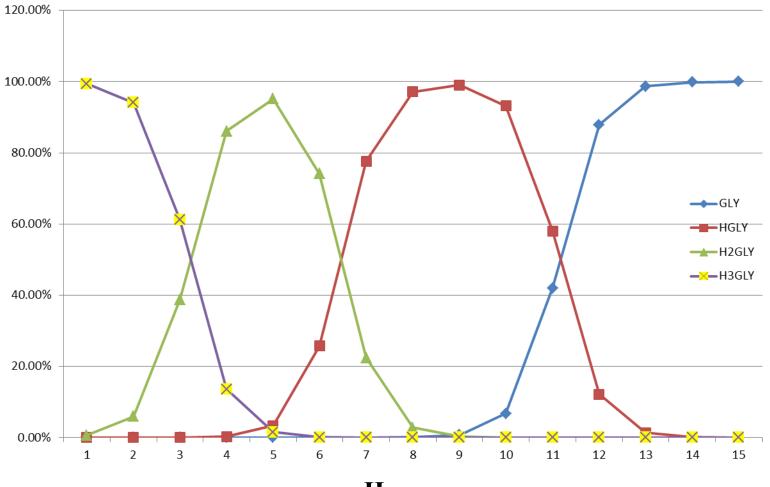

Eye-to-eye contact helps a lot too as you can see from one of our sessions.

This works with grandchildren, nieces and nephews as well!

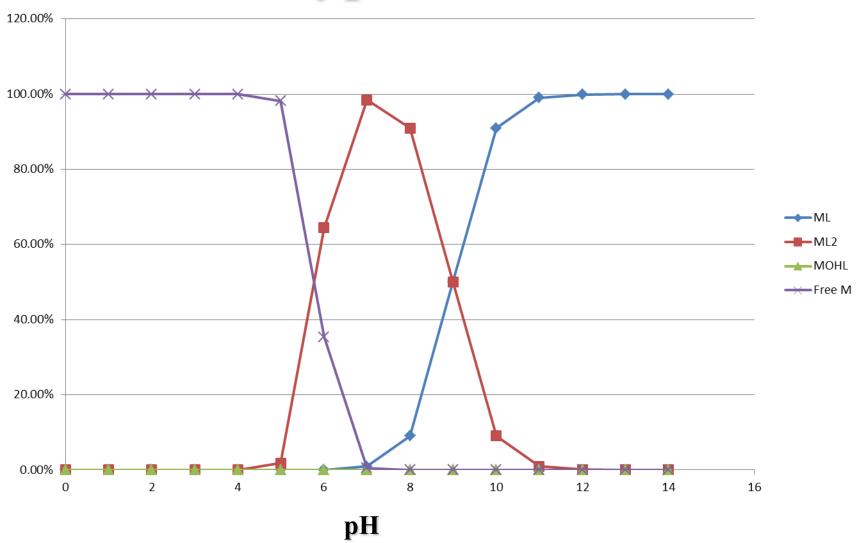

If you came upon this ad in 1919,

Wouldn't you just keep drinking?

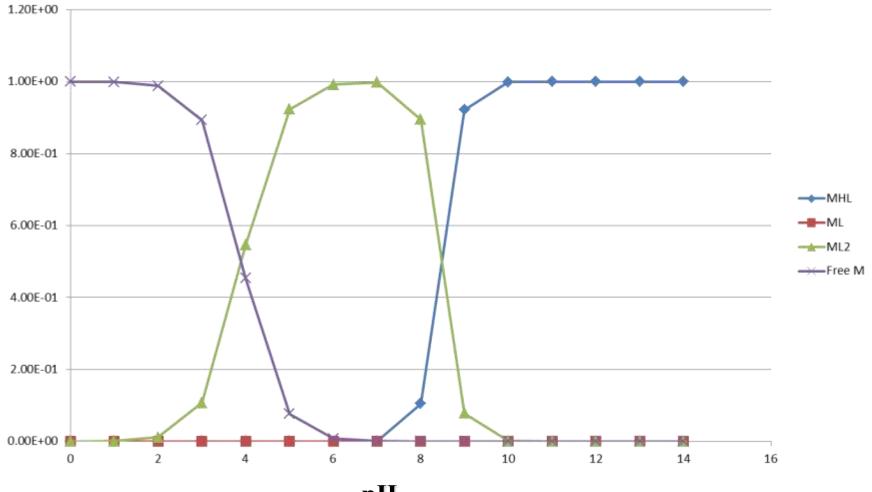

New Boat and Pickup - New Experience


His friend said, "Don't get the boat too far in the water before unhooking from the trailer"

Glyphosate Chelate (Complex)



Glyphosate Species



pН

Zinc Glyphosate Chelate

Copper Glyphosate Chelate

pН

Mn Sufficiency* Range for Agronomic Crops

Crop	Range	Crop	Range
Barley	25-100	Sorghum	6-190
Bean	20-100	Soybean	20-100
Canola	25-250	Sugar beets	26-360
Corn	15-300	Sugar cane	25-400
Cotton	25-350	Sunflower	50-1000
Oats	25-100	Tobacco	26-400
Peanut	60-350	Tomato	25-35
Rice	150-800	Wheat, spring	25-100
Rye	14-45	Wheat, Winter	16-200

Depends on: cultivar efficiency, growth stage, soil physical and biological environment

Types of Physical Stress

Stress effect on nutrition	STRESS	Nutrition effect on stress	
Solubility	WATER DEFICITCa, F		
Microbial activity (form)	WATER EXCESS Root growth, physiology		
Root growth, N-loss		Microbial activity	
Microbial activity, N-loss	COMPACTION	Fe, Mn, Mg, Ca, S	
Root growth, uptake, O ₂	(GAS EXCHANGE)	Availability, resistance	
Availability, uptake Microbial activity	рН	Ca, Fe, Mg, Mn, Mo, S, Zn Microbial activity	
Translocation	LOW TEMPERATURE	Cu, Mn	
Respiration	and	Physiology, hardiness	
Microbial activity	HIGH TEMPERATURE	Co, Cu, Mg, Mn, Ni	
Metabolism Respiration	LIGHT	Ca, Cu, Fe, Mn, S N-form, Ni	

Types of Chemical Stress

Stress effect on nutrition	STRESS	Nutrition effect on stress
Chelate, imobilize	MICROBIAL METABOLITES	Fe, Mn, N, etc.
Chelate, complex Microbial activity Uptake, efficiency	AGRIC. CHEMICALS HERBICIDES	Specific to general N, Cu, Fe, Mn, Zn
Physiology, root growth	ALLELOPATHIC	Cu, Fe, Mn, S
Reduced availability	PLANT COMPETITION (w	veeds) Most
Microbial activity, chelat	e ORGANIC MATTER	B, Cu, Fe, Mn, Mo, Zn
Deficiency Amount, form, time avail	NUTRIENT DEFICIENCY able	All, physiology, resistance Specific to general

Micronutrients: Needs and Function

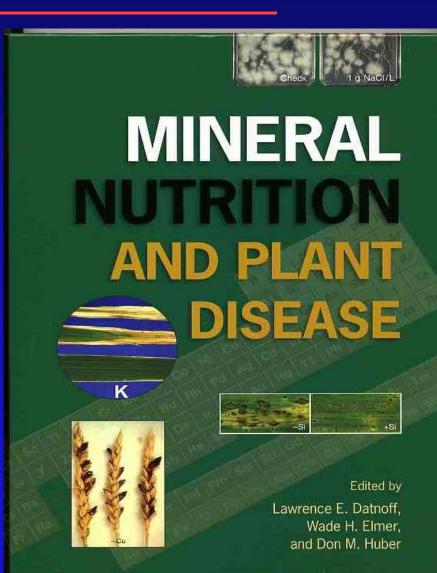
Symbo	I Name	Need	Some functions
В	Boron	4-100	Carbohydrate met, cell wall, pollen germ.
Со	Cobalt	Trace	Carbohydrate, N-fixation
Cu	Copper	5-15	Protein, sugar, pollination, defense-stress
Fe	Iron	20-50	Photosynthesis, energy, N-fix., ox-red
Mn	Manganese	18-50	Photos, ox-red, AA, energy, TCA, defense-stress
Мо	Molybdenun	n 0.5-1	Sugar, AA, N-fix., N-red.
Ni	Nickel	Trace	N-metabolism, germination, yield
Zn	Zinc	20-150	Respir, hormone, AA, ox-red, permeability, stress

Micronutrient Deficiency Symptoms

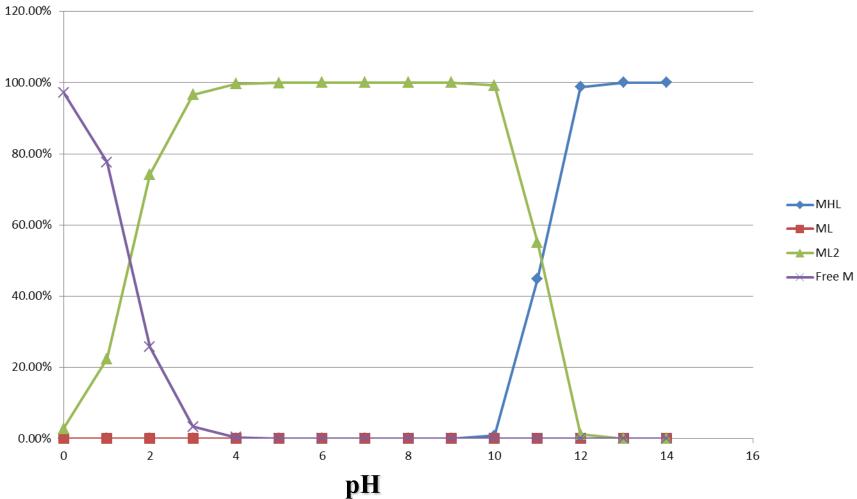
Micro	Symptom
В	Stunting, die-back, cracking, poor flowering, yellows
Со	Slow growth, poor nodulation
Cu	Stunting, yellow, rolled leaf, die-back, poor flowering, disease
Fe	Stunting, yellow, few nodules
Mn	Stunting, Interveinal yellow, leaf spots, malformed leaves
Мо	Stunting, interveinal yellow, mottling, necrosis, no nodules
Ni	Small leaves, slow growth, bud drop
Zn	Stunting, rosette, yellow, necrosis, twisting

Nutrient Soil Conditions Inducing Nutrient Deficiency

- N Leaching, low OM, residue burning, denitrification, microbial sinks
- P Acid, organic, leached & calcareous soils; excess liming
- **K** Sandy, organic, leached, eroded soils, intensive cropping
- Ca Acidic, alkali, or sodic soils
- Mg Low clay content, sodic low Mg soils
- **S** Low organic matter soils, high use of N and P
- **B** Sandy, acidic leached soils, alkaline soils with free lime
- Cu High pH, low or high organic soils
- Fe Calcareous soils, high P, Mn, Cu, or Zn; excess liming
- Mn Calcareous silt and clays, high organic matter, oxidative organisms
- Mo Highly podzolized soils, well drained calcareous soils, low pH
- Zn Highly leached acidic soils; well drained calcareous soils


Root exudation of organic compounds from cotton, wheat and apple with different Zn levels

Zn Treatment	Amino acids	Sugars	Phenolics
	(µg g⁻¹ root 6h⁻¹)		
	COTTON		
-Zn	165	751	161
+Zn	48	375	117
	WHEAT		
-Zn	48	615	80
+Zn	21	315	34
		APPLE	
-Zn	55	823	350
+Zn	12	275	103

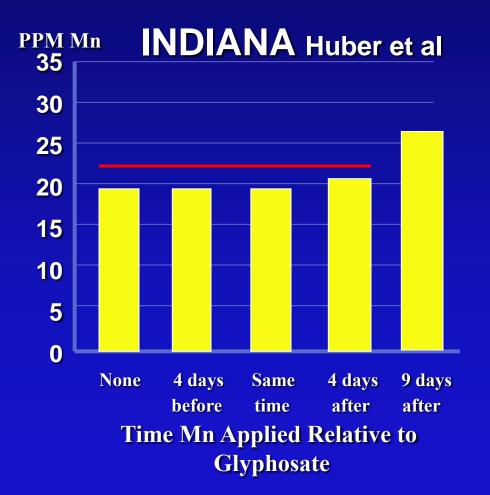

Cakmak and Marschner, 1988, J. Plant Physiol.

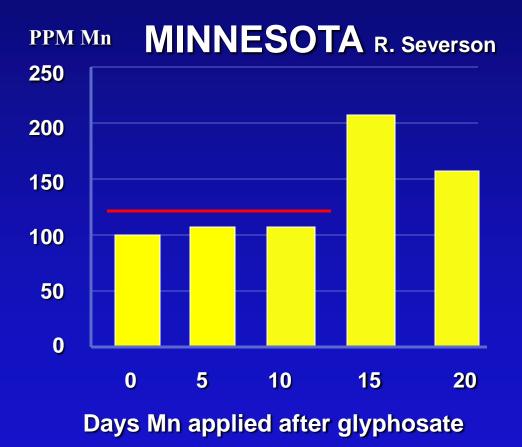
Nutrition Changes the Host Environment

 Specific nutrients Form of nutrient - esp. N Time applied Rate applied Nutrient interactions Herbicide interactions

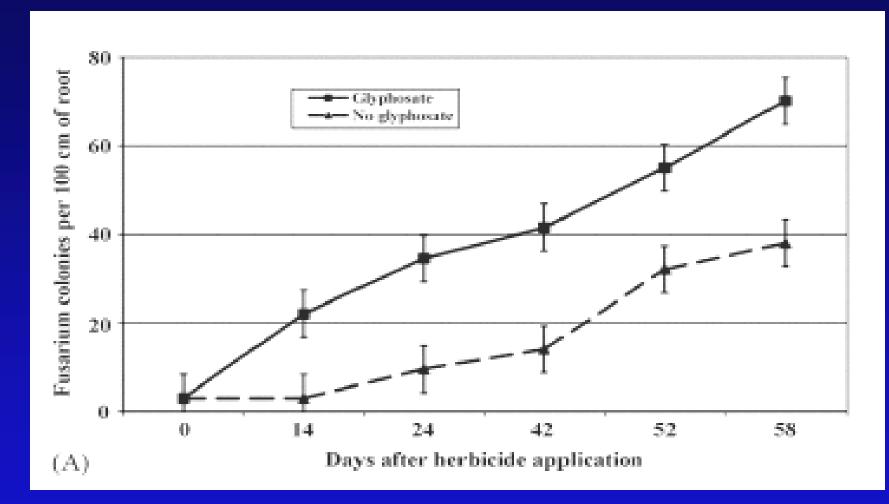
Iron Glyphosate Chelate

Evaluation of Roundup Ready® Yield Drag An Evaluation of 8,200 University-based Soybean Varietal Trials Source: Benbrook. Ag Biotech Info. Net. Tech. Paper No. 1

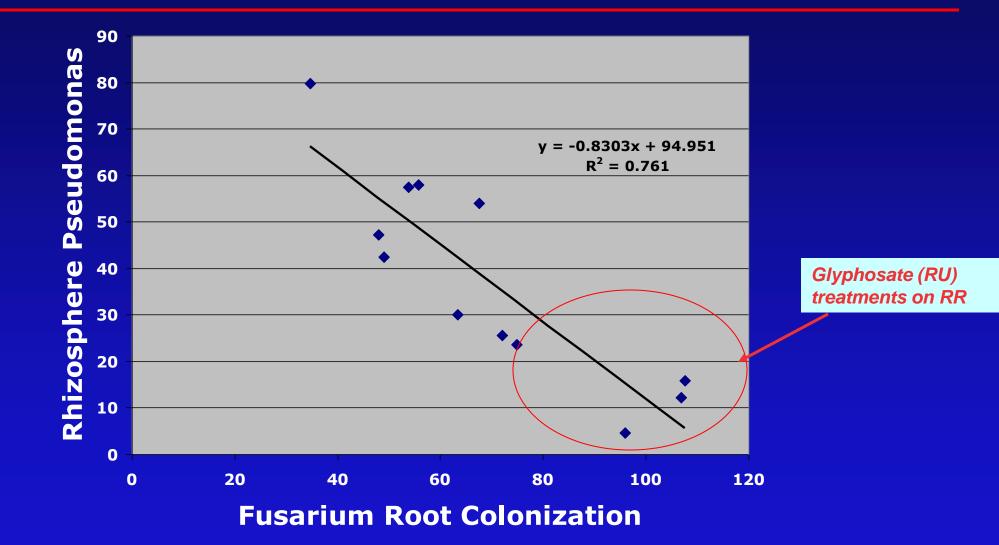

93 % showed lower yields for RR than non-GMO
RR averaged 6.7 % lower than non-GMO
RR were 10 % lower than best Midwest varieties


RR yield drag could result in a 2.0-2.5 % lower national yield
 Potentially the most significant decline in a major crop ever associated with a single genetic modification

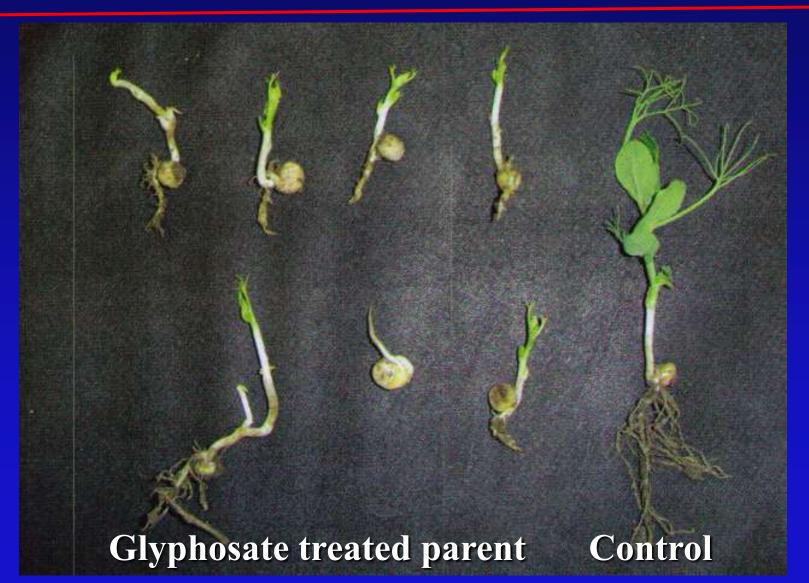
RR uses 2 - 5 times more herbicide than conventional
 10 times more than multitactic


RR yield drag and Tech fee impose an indirect tax
 as much as 12 % of gross income per acre

Effect of Time of Mn Application AFTER Glyphosate on Tissue Mn



Typical trend in Fusarium colonization of RR roots


Glyphosate applied at 0.84 kg a.e./ha (0.75 lb/A) on Pioneer 94B01 Roundup Ready® soybean variety at the V4 growth stage, 1998 (Kremer & Means 2009)

Relationship Between Colonization of Soybean Roots by Fluorescent *Pseudomonas* spp. and by *Fusarium* spp.

Apparent antagonism of Fusarium growth by Pseudomonas spp., Kremer & Means 2009

Effect of Pre-harvest Glyphosate on Pea Seed Germination

Remember

1. Glyphosate kills weed plants by increasing disease *Optimize crop nutrients for sufficiency*

2. Glyphosate-tolerant plants are less nutrient sufficient Compensate for reduced efficiency

3. Learn to recognize symptoms of glyphosate damage *Minimize by plant delay and detoxification Avoid interactions for other crops in the rotation*

4. Use glyphosate judiciously!

Poor Boll Retention, Sterile Locules in RR Cotton. WHY?

Glyphosate+Mn

Glyphosate

Mis-shaped cotton boll from glyphosate

Citrus Variegated Chlorosis Predisposition to CVC (*Xylella fastidiosa*) by glyphosate

Glyphosate Resistant Weeds

It starts this way >>>> and >>>> Develops into this

Increased Disease on Crops in the Rotation

- Beans (*P. vulgaris*) after RR sugar beets Fusarium root rot Rhizoctonia hypocotyl rot
- Alfalfa after RR corn or RR soybeans
 - Fusarium root and crown rot Phytophthora root and crown rot Aphanomyces root rot
- Wheat after RR canola
 - Fusarium root and crown rot Fusarium head scab
- Potatoes after RR corn (RR sugar beets?) Verticillium wilt Fusarium dry rot Rhizoctonia stolon canker Common scab

Residual Soil & Crop Sequence Effects of Glyphosate

Severe Verticillium wilt after 1 year of RR corn (left) Idaho, 2009

Mild Verticillium after wheat (no Glyphosate, right)

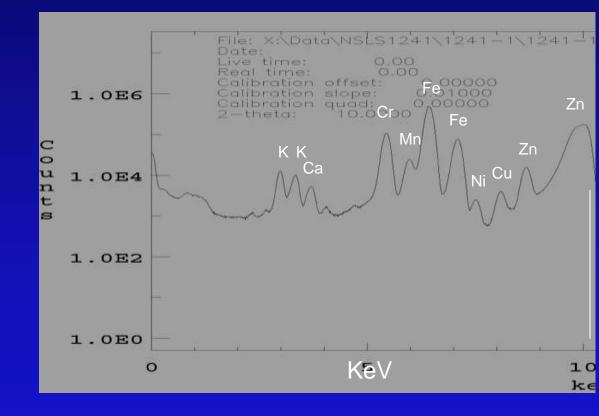
Crop sequence effect on Mn⁺²

Rotation

Extractable Mn

Continuous Corn Roundup Ready® corn Continuous soybeans Soybean, wheat, <u>corn</u> Wheat, corn, <u>soybean</u> 130 ppm 60 ppm 64 ppm 91 ppm 79 ppm

Remember


- **1.** Glyphosate reduces nutrinet efficiency Compensate for reduced nutrient availability & efficiency
- 2. Glyphosate accumulates in growth points Detoxify glyphosate in plant tissues and soil
- **3.** Glyphosate has strong biological activity Manage soil microflora, inoculate legumes
- **4.** Residual glyphosate effects other crops in the rotation *Manage diseases, weeds, pests effectively*
- **5.** Glyphosate and glyphosate tolerance can reduce crop quality *Compensate for lower nutrients by fertilization USE glyphosate judiciously*

Mineral Composition of 'New" Organism*

Fluorescent Spectra for Dried Sample

Mineral	Wet sample	Dry sample
K	2.1	3.2
Ca	1.4	4.2
Mn	0.4	2.5
Fe	15.9	74.2
Cu	2.5	6.7
Zn	4.9	19.6
Ni		1.9
Cr	0.5	8.3

*'Swabbed' from agar surface

What is Known About the Organism > Characteristics

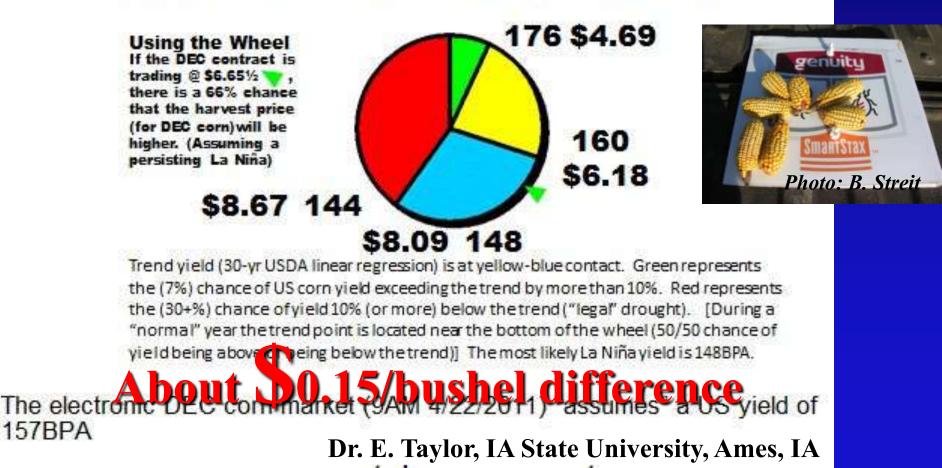
- Very small (EM visible at 38,000 X) (size of a virus)
- Filterable passes through a bacterial filter
- Culturable self replicating
- Common in nature (ubiquitous? in soil) IA, IL, KY, MI, NE, ND, WI
- Unknown taxonomic position (genetic sequencing in progress)
- Synergist with bacteria (gram+, e.g. alfa-Streptococcus) and other microbes

Infectious nature - infects animals, plants, fungi (systemic)

> Affect in animals (horses, cattle, pigs, poultry)

- Causes infertility
- Causes spontaneous abortions (miscarriage-man)
- Death of chicken embryos
- In milk from cows fed high infected feed

> Affect in plants


- High population in 'scorch' type diseases
- 'Extends' symptoms of Goss' wilt (corn) and SDS (soybean)
- Seed-borne (?) in soybean seed and feed/food products

What Does it Mean to You?

La Niña Corn Yield Risk

Yield per acre risk computed by Elwynn, Likely harvest price on DEC contract is derived from Wisner "Balance" sheet of 20 Apr 2011. Risk zones are sized assuming that La Niña conditions persist into July.

Dr. Wisner's projections: 151Bu:\$7.70, 161Bu:\$6.05, 168Bu:\$5.25

Remember

1. Genetic potential & nutrient sufficiency are reduced by glyphosate *Optimize crop nutrients for yield and quality*

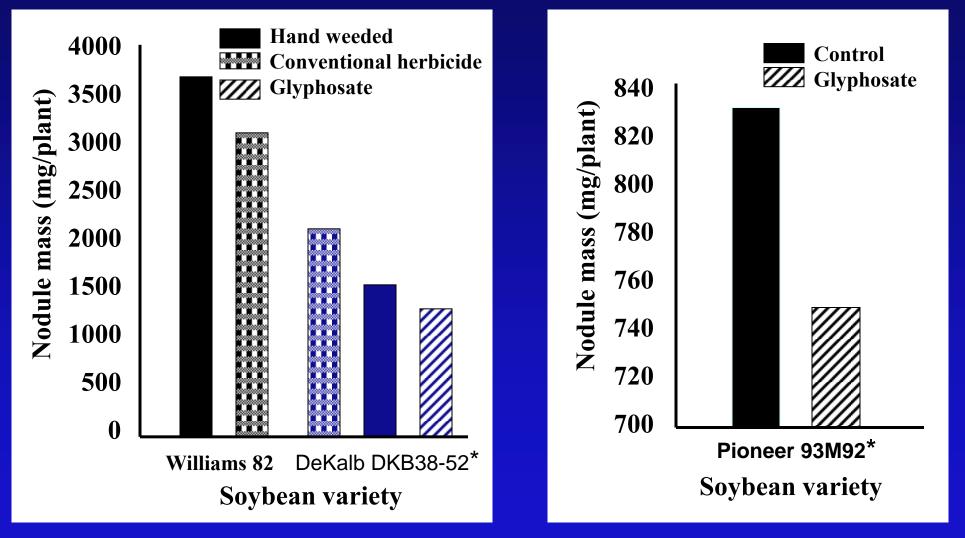
2. Nutrition is important for disease and stress resistance *Optimize crop nutrients for yield and quality*

3. Recognize symptoms of glyphosate damage *Minimize by plant delay and detoxification Avoid interactions for other crops in the rotation*

4. There are health and safety concerns with glyphosate use USE GLYPHOSATE WISELY and JUDICIOUSLY!

Conclusions & Recommendations

- **1.** The glyphosate-resistance gene selectively reduced Mn uptake *Select cultivars with highest Mn efficiency*
- **2.** Application of glyphosate reduced Mn translocation in tissues *Apply micronutrients 8+ days after glyphosate*
- **3.** Glyphosate formulation and nutrient source influence uptake Select formulations that are compatible for uptake
- **4.** Changes in rhizosphere biology are accumulative Use cultural practices that minimize glyphosate impact
- **5.** Glyphosate reduces root growth *Detoxifiy glyphosate in roots and rhizosphere*
- **6.** Disease severity increases Use alternate weed control -Minimize glyphosate use


Remember

1. Nutrient sufficiency is critical for efficient crop production Determined by the interactions of the plant, environment and microbes Balance the nutrients to meet the plant needs

- **2.** Know your soil, Know your seed *Soil and tissue test as needed, keep records*
- **3.** Glyphosate is a strong nutrient immobilizer to influence function Select cultivars with highest nutrient efficiency
- **4.** Glyphosate is released in root exudates to reduce microbe populations *Consider inoculation of legumes and stimulating beneficials*
- **5.** Insertion of the glyphosate tolerance genes result in a yield drag *Compensate for the reduced nutrient efficiency*

Effect of the RR Gene & Herbicide on Root Nodule Mass

After Kremer & Means, 2009

*Roundup Ready®

Soybean obtains 25 – 75% of its N from N₂ fixation; the remaining is from soil N (Heatherly & Elmore 2004). **Under some** conditions, soil N may be depleted, requiring greater reliance on biologically fixed N – residual glyphosate in GR plants and that released into the rhizosphere affects efficiency of N₂ fixation!

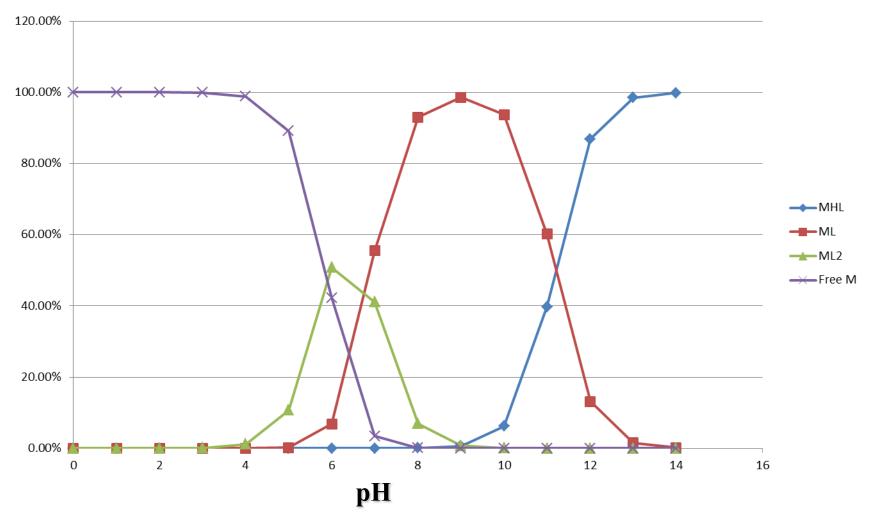
Effects on Nitrogen Fixation

(After Kremer, 2010, Zobiole et al, 2010)

Soybean nodulation at R1, 2010

Glyphosate

Control Photo by R. Kremer


Take-all and Populations of Mn-oxidizing Rhizosphere Bacteria

Cattle dung (manure)

Mn Availability & Biological Activity

pH: 5.2 7.8 Mn form: Mn²⁺ Biological Activity Mn⁺⁴ No

Manganese Glyphosate Chelate

Yellowing of leaves ('flashing' in **GR** soybean after glyphosate application suggests: 1) Immobilization of essential nutrients for chlorophyll development & photosynthesis; or

2) Toxicity of glyphosate breakdown product (AMPA)

(Bott et al. 2008, Neumann et al. 2006, Sprankle et al. 1975)

Chlorosis on Asgrow AG3539 soybean ("second generation") after glyphosate application at V4 growth stage (Zobiole et al. 2011, J. Plant Nutr. Soil Sci.

Poor Bud Break, Small Leaves, Stem Epinasty Nickel Deficiency

Plus Ni (pre bud break)

Pecan Same symptoms from glyphosate on coffee, blue berries, etc.

after B. Wood, 2007