

Got Milk? An Economic Look at Cow Size and Milk

July 13th, 2015

"Every complex problem has a simple solution, and it's usually wrong." -Author unknown

The "Optimum" Beef Cow

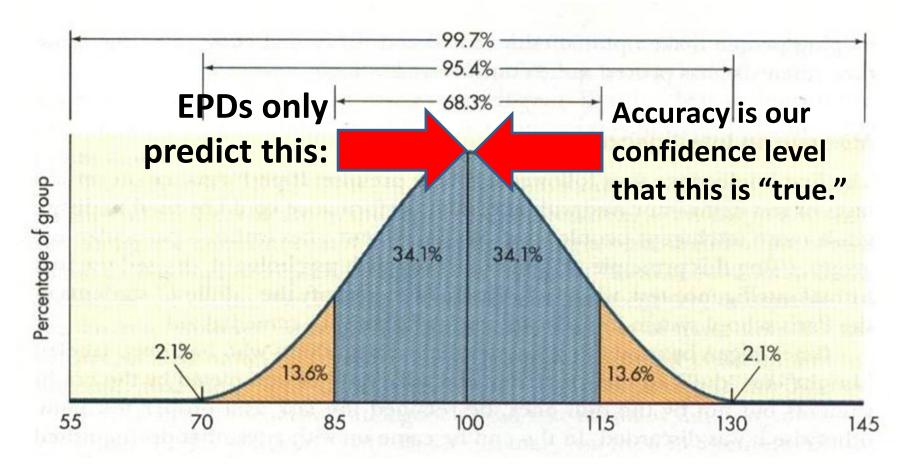
- The never-ending cow size argument...
- Longevity argument...
- "The goal would be modest size cows with high reproductive rates and low input costs which produce high-value calves."
 - Scott Greiner, VA Tech
- Pounds weaned per pound of cow...
 - Per unit of energy consumed

Then this is profitability....

- Return to labor?
- Return to estrus?

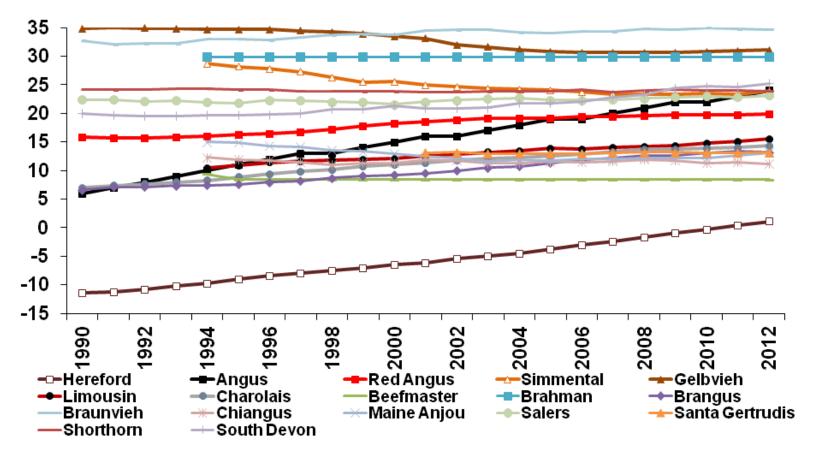
The "Optimum" Beef Cow

- What about Milk?
- What does a pound of mature size cost?
- What does a pound of Milk EPD cost?


 MARC-"Energy use is less effective in higher milking cows."

 Are we ever going to truly understand cow efficiency given the grasses and management variability?

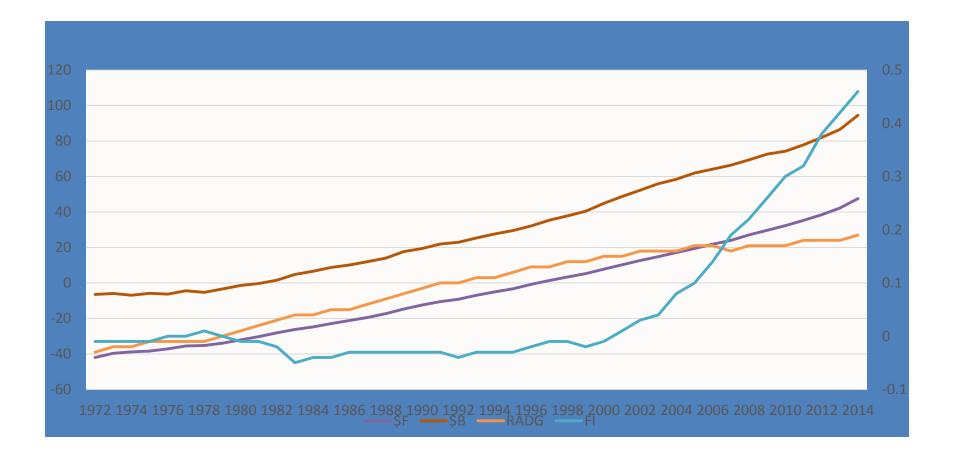
- Is Milk EPD a part of cow efficiency research?


EPDs: The Bell Curve

Iowa Beef Center

Genetic Trends for Maternal Milk, lb

Adapted from Spring 2014 Genetic Trends from Breed Associations and 2014 AB-EPD factors



Things to think about...

- Milk EPD is the genetically unexplainable portion of Weaning Weight
 - ...has very little to do with the white stuff that comes out of the udder!
 - Could we figure it differently?
 - Should BCS be part of a \$Index?
- The correlation of Milk EPD to BW and WW is weak and negative (-.14 & -.16)
- Can we effectively reduce Milk via selection without negative impact on growth?

Angus Genetic Trends

Changes to \$F and \$B

- December 5, 2014 EPD release included:
 - Updated economic assumptions on all indexes
 - 3-year rolling average
 - Incorporation of Dry Matter Intake into \$F and \$B

Measured in pounds of feed per day

Producti				ion						М	atern	al			
CED Acc		WW Acc		RADG Acc		YH Acc		Doc Acc				MkH MkD		MH Acc	\$EN
+6 .30	+1.6 .38	+41 .29	+78 .30	I+.16 .05	I+.47 .05	+.1 .41	I+1.34 .05	+19 .35	+10.3 .21	+9 .18	+21 .23		I+36 .05	I+.6 .05	+.05

		Car	cass		
CW Acc	Marb Acc	RE Acc	Fat Acc	Carc Grp Carc Pg	Usnd Grp Usnd Pg
+27 .21	+.43 .24	+.28 .28	+.032 .25		

\$Values								
\$W	\$F	\$G	\$QG	\$YG	\$B			
+29.31	+27.46	+25.80	+25.10	+.70	+77.53			

Live Weight	Metabolic Weight	Animal Unit Equivalent (% of 1,000lbs.	Equivalent Herd Size (Baseline: 100 1,000lb cows
1,000	178	100%	100
1,200	204	115%	87
1,400	229	129%	78
1,600	253	142%	70

Kleiber's Theory: Metabolic Weight = Live Weight ^{.75} (1932)

Maintenance Energy Requirements Cow A Cow B

- 1,100 lbs.
- "Low" Milk potential
- Total lbs. TDN/cow/yr - 3,726
- Total lbs. forage/cow/yr - 6,774
- 396lbs. calf (36%)

- 1,100 lbs.
- "High" Milk potential

Iowa Beef Cente

IBC

- Total lbs. TDN/cow/yr - 4,159
- Total lbs. forage/cow/yr - 7,561
- +787lbs. Forage/year
 - \$75/ton = \$30/yr
 - \$200/ton = \$90/yr
- 495lbs. Calf (45%)

Maintenance Energy Requirements

- If you had 100 high milking cows...
 756,100lbs. of forage annually
- If you had lower milking cows...
 756,100lbs. / 6774lbs. intake = 111 cows
- 106 (396lb.) calves 95 (495lb.) calves
 - 41,976 @ \$3.05 47,025 @ \$2.85
 - -\$128,027 \$134,021

-- \$5,994 (+ var. costs, depreciation, labor)

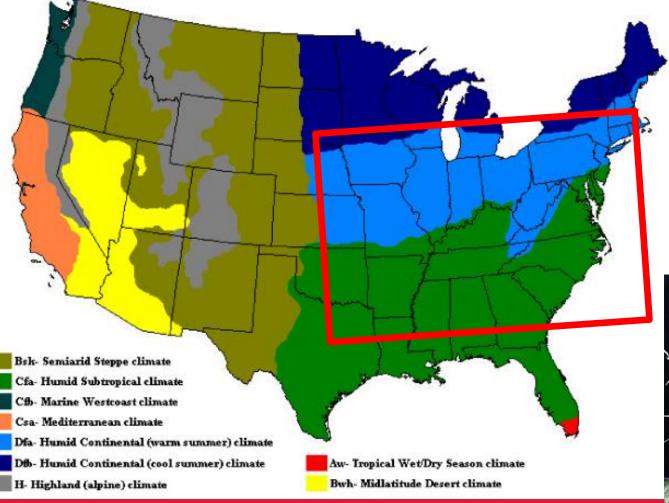
Show me the money...

- 165,000 cow database
- 12 additional Megacalories/year (ME EPD)
 = +3 pounds of weaning weight
- <u>Weaning Weight WINS</u> every year since 1975 by at least \$2.50/hd
 – Corn & calves adjusted for inflation
- Bigger cows use energy more efficiently
 - 1200lb cow weighs 20% more than 1000lb cow, BUT feed requirements are only 13% more
 - Mouse vs. elephant

MARC Cycle VII Post-weaning Growth and Carcass Traits

	Mature Cow weight	ADG	Slaughter Weight	Carcass Weight
Hereford	1417 #	3.32	1322 #	803 #
Angus	1408 #	3.32	1365 #	836 #
Red Angus	1406 #	3.26	1333 #	811 #
Simmental	1401 #	3.26	1362 #	829 #
Gelbvieh	1320 #	3.12	1312 #	800 #
Limousin	1388 #	3.12	1285 #	795 #
Charolais	1368 #	3.21	1348 #	826 #

So when is Milk EPD too book a Beef Center high???

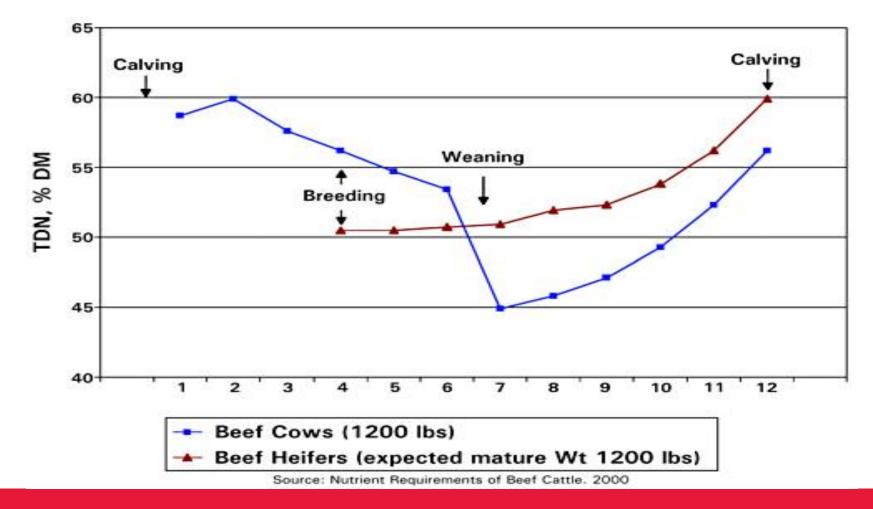

- Environmental Challenge
 - Drought
 - Fescue Toxicity (ergot)
 - Excessive heat
 - Nutritional deficiency
 - In most cases, 3-4 of these happen at the same time
 - Pinkeye, BRD, etc.

The Fescue Belt?

Climate Zones of the Continental United States

Facts about fescue

- Fat cows are better than thin
 Fat seems to dilute the toxin effect
- Moderate/Low milk better than High milk
- Red & white hides better than black
- Creep feed can help mid- to late-summer
- Fall calving avoids nutrient demand in high toxicity
- Good "fescue" cows were gestated in a cow on fescue (bulls too!)
 - Do not move bred heifers to the fescue belt
 - The "buy local" movement
- Dilution, legumes, & management effective

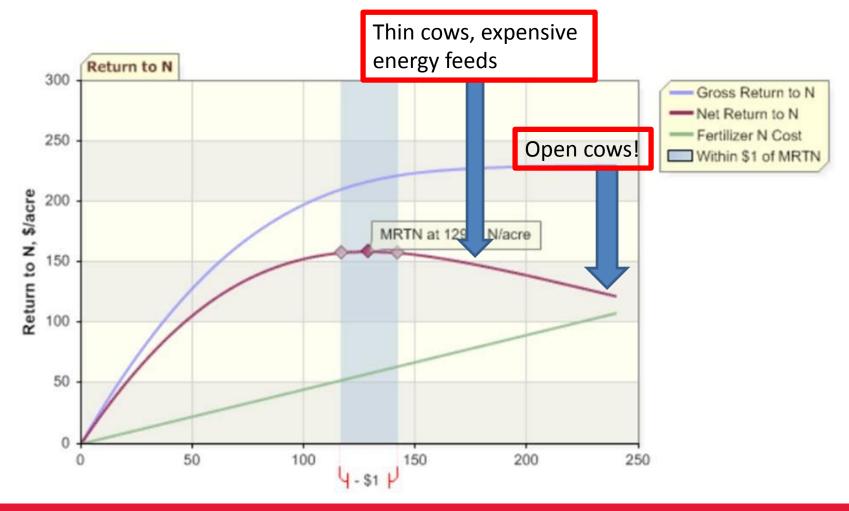

Energy & CP Requirements

Item	% TDN	% CP
Mid-Gestation Req.	53	8
Late Gestation Req.	57	10
Early Lactation Req.	63	12
Нау	43 – 63	6 - 22
Corn silage	63 - 70	7 - 10
Corn stover	45 – 55	4 - 7
Wheat straw	44 – 48	< 5
Soybean straw	35 - 45	< 5

All cows are not created equal.

Table 13-2. Daily Ene	ergy and Prote	in Requirer	nents for a	1200 lb., BC	S 5, Mature C	ow ^{a,b}	IBC Io	wa Beef Co	enter
					Milk (lbs/day)				
Months	Cow	Low (1	.5 lbs)	Modera	ate (20 lbs)	High (25 lbs)		
Since	Scale Wt.	NE _m ^c	CP ^d	NE _m	СР	NE _m	СР		
Calving	BCS = 5	Mcal	lbs	Mcal	lbs	Mcal	lbs		
1 April	1200	14.5	2.4	15.8	2.7	17.2	3.0	L	
2 (peak lactation) 3 4 5 August 6	1200	15.3	2.6	16.9	3.0	18.6	3.4		
3	1205	14.8	2.5	16.3	2.8	17.8	3.2		
4	1205	14.0	2.3	15.1	2.5	16.3	2.8	Dactu	ra
5 August	1205	13.1	2.1	14.0	2.3	14.9	2.5	Pastu	
6	1210	12.5	1.9	13.1	2.0	13.7	2.2		
7 (weaning)	1215	9.0	1.5	9.0	1.5	9.0	1.5		
8	1225	9.3	1.5	9.3	1.5	9.3	1.5	C+alk	~
9	1240	9.8	1.6	9.8	1.6	9.8	1.6	Stalk	.5
10 January	1260	10.7	1.7	10.7	1.7	10.7	1.7		•
11	1290	12.0	1.9	12.0	1.9	12.0	1.9	+250	
12	1340	13.9	2.2	13.9	2.2	13.9	2.2	BCS 3	
^a Adapted from NRC, 1996	+140								•
^b Does not account for incre	ased energy need	Is due to cold st	.ress						
^c Net energy for maintenanc	ce, Mcal/day								
^d Crude protein, lb/day									
IOWA STAT	IOWA STATE UNIVERSITY								

Extension and Outreach



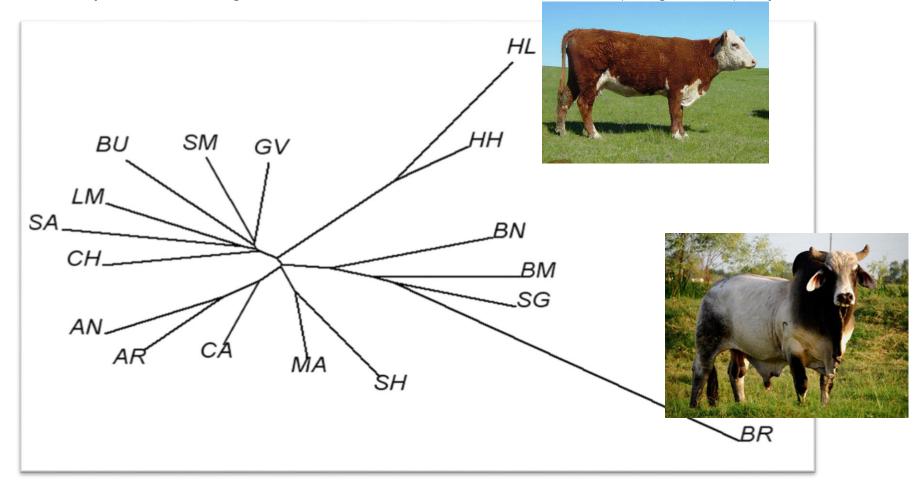
E Requirements: Wind Chill

Wind Chill, °F	Thin or Wet Cow	Moderate, Dry Cow
30	0 %	0 %
20	+30 % ~ 2.5 lb	o corn +13 % ~ 1 lb corn
10	+60 % ~ <mark>5 lb c</mark>	orn +26 % ~ 2.5 lb corn
0	+90 % ~ 7.5 lb	o corn +39 % ~ 4 lb corn

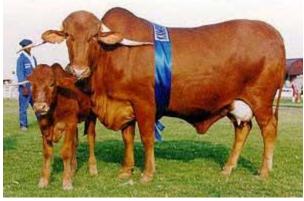
If Milk is the "N" of Corn...

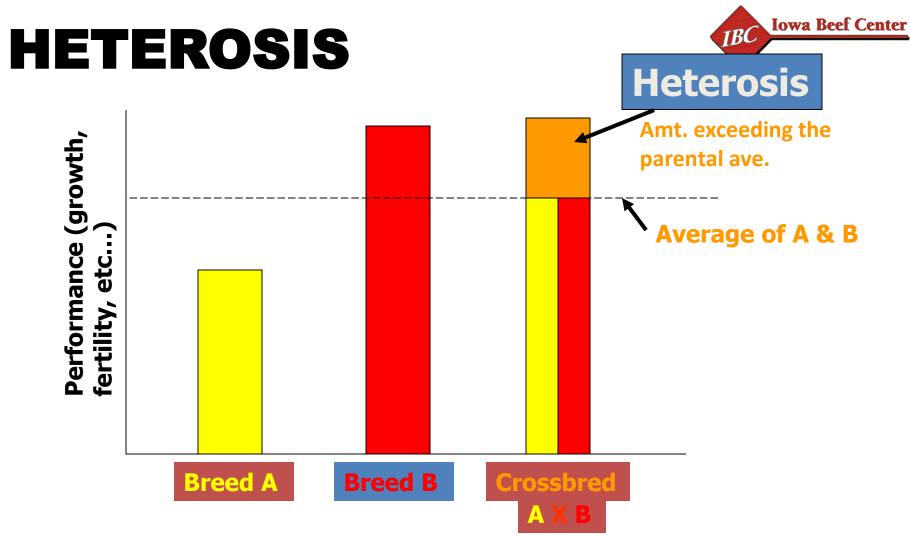
Iowa Beef Center

This is where corn may be headed...



Capturing Heterosis


(Picture courtesy of the USDA-Meat Animal Research Center, Clay Center, NE)


Embrace Heterosis

- Breed Complementarity
 - The more unrelated the breeds, the better
- Match your Cows to your environment, your bulls to your market.
- The potential weaknesses of one breed should be offset by the strengths of another
 - Africander X Hereford (pink eye/cancer eye)

Crossbred animals tend to perform better, in certain traits, than the average of their parents. Heterosis is that amount by which performance in the crossbred exceeds the parental average.

3 Types of Heterosis

1. INDIVIDUAL HETEROSIS - found in X bred calves

2. MATERNAL HETEROSIS - 2/3 of the crossbreeding advantage

3. PATERNAL HETEROSIS - found in "composite" sires

MATERNAL HETEROSIS

IBC Iowa Beef Center

...effects reproductive performance

- earlier puberty
- higher 1st service conception rate
- lower embryonic death loss
- faster breed back
- higher % calves weaned
- greater longevity (1.3 years)
- maternal impact on calf performance
 - more milk & improved immune response passed to calves

PATERNAL HETEROSIS

- increased mating ability, fertility, longevity
- lower cull rates
- increased SC & sperm viability

INDIVIDUAL HETEROSIS

- higher early calf growth
- more early vigor (more live calves)

Average Heterosis in Beef Cattle Traits

Trait	% Heterosis
Calf Crop Weaned	8
Weaning Weight	13
Yearling Weight	4
Carcass Traits	3
Lifetime Productivity	25

HETEROSIS from Various Crossbreeding Systems

	% Max. heterosis		% inc. in c	ow exposed	
Term. sire/purch. F1Q	100	Maxir	num	23-28	
Purebreds	0		ossing inbred hin a breed	0	
2 breed rotation	67	67 16		16	
3 breed rotation	86		20		
2 breed composite	50	Still cor	siderable	12	
3 breed composite	63	het	erosis	15	
Rotating F1 (AB/AD)	67		16		
Rotating F1 (AB/CD)	83			19	

The Dollars of Heterosis

- 100 cows, 80% Weaning Rate, 575 avg. weaning weight, 10 year horizon
- Calf Survival to Weaning (4%) = 40 hd.
- Weaning wt. (8%) = +36,800 lb.
- Weaning wt. per cow exposed (23%) = +105,800 lb.
 - ~ 18 calves/year @\$2.00 weaning wt
 - ~ heterosis is worth \$207/cow/year

IOWA STATE UNIVERSITY Extension and Outreach

SimPlace 2008:The Science of Making Better Cattle and Better Beef

Summary

- The cow size argument is not winnable.
 - Big cows work better when feed is delivered.
 - Small cows work better when forage is scarce.
- Milk EPD may drive reproductive success/failure.
 - Genetic trend (maternal breeds) may limit our mgmt options
- Fescue toxicity can be managed.
 - Thin, open cows are a management mistake, not a product of environment.
- Cow "employee" checklists are effective.
 - What are your expectations?
 - Bull Selection may get cows "fired" or "hired!"

What do you expect out or your cows?

- Write down the top 3-5 things they MUST do to stay on the farm!!!
 - How many cows pass ALL the specs?
 - Are you buying bulls to help them succeed?
 - MILK EPD too high?
 - Mature size vs. resources
 - Docility EPD? Breed of Choice?
- Could A.I. or E.T. get you there faster?

Questions?

Patrick Wall ISUEO Beef Field Specialist 210 N. Iowa Street Knoxville, IA 50238 O: 641-842-2014 C: 515-450-7665 patwall@iastate.edu www.iowabeefcenter.org

