Economic analysis of integrated crop-livestock systems in Iowa

IOWA STATE UNIVERSITY Hanna Poffenbarger January 19, 2017

Benefits of integrated crop-livestock systems

The ruminant advantage

Convert cheap, environmentally-benign feedstuffs into human usable products

- Generate demand for forages, which conserve soil, protect water quality, reduce N fertilizer requirements (alfalfa), and reduce yield losses to pests, diseases and weeds.
- Produce manure, which can increase soil organic matter and reduce fertilizer requirements.
- Diversifying enterprises can increase profits and reduce income volatility.

Goal

To compare the profitability of integrated croplivestock systems to cash crop systems.

Systems

- 2-yr vs. 4-yr crop rotation With and without cattle

Iowa State University Marsden Farm, Boone Co., IA

2-year rotation: corn-soybean (cash grain)
3-year rotation: corn-soybean-oat/red clover (green manure)
4-year rotation: corn-soybean-oat/alfalfa-alfalfa (hay)

Product	2-yr cash
Corn grain	Sold
Corn stover	
Corn silage	
Soybean grain	Sold
Oat grain	
Oat straw	
Oat silage	
Alfalfa hay	
Fed steer	

Product	2-yr cash	2-yr int*
Corn grain	Sold	Fed
Corn stover		Bedding
Corn silage		Fed
Soybean grain	Sold	Sold
Oat grain		
Oat straw		
Oat silage		
Alfalfa hay		
Fed steer		Sold

*Receives manure

Product	2-yr cash	2-yr int*	4-yr cash
Corn grain	Sold	Fed	Sold
Corn stover		Bedding	
Corn silage		Fed	
Soybean grain	Sold	Sold	Sold
Oat grain			Sold
Oat straw			Sold
Oat silage			
Alfalfa hay			Sold
Fed steer		Sold	

*Receives manure

Product	2-yr cash	2-yr int*	4-yr cash	4-yr int*
Corn grain	Sold	Fed	Sold	Fed
Corn stover		Bedding		Bedding
Corn silage		Fed		
Soybean grain	Sold	Sold	Sold	Sold
Oat grain			Sold	Sold
Oat straw			Sold	Sold
Oat silage				Fed
Alfalfa hay			Sold	Fed/sold
Fed steer		Sold		Sold

*Receives manure

Livestock systems

(Deep-bedded confinement)

System	Production system	Starting weight (lbs)	Ending weight (lbs)	Days on feed	Growth cycles per year	Cattle per year*
2-yr int	Finishing	750	1350	176	Feb-July Aug-Jan	1503
4-yr int	Backgrounding + finishing	500	1250	238	Nov-July	760

*Number of cattle that can be supported on farm-raised feed.

Feed component	2-yr int	4-yr int
Corn grain (bu)	49.6	64.6
Mod. Distiller's grain (ton)	0.4	0.3
Corn silage (ton)	1.7	
Oat silage (ton)		0.6
Alfalfa hay (ton)		0.4
Mineral/supplement (lb)	144.2	98.7

Calculating profitability

Returns to land and management (\$/acre) = Revenue – Costs*

*All costs except land and management

Whole farm balance (\$/acre) =

Returns to land and management_{crop} + Returns to land and management_{livestock}

Cost and Price Assumptions

- **Grain and hay prices** were taken from Iowa marketing year averages provided by the USDA National Agricultural Statistics Service. Silage prices were estimated using ISU E&O's "Pricing Forages in the Field".
- **Input costs** were taken from ISU E&O's annual report "Costs of Crop Production in Iowa," and from local businesses.
- Machinery and labor costs were based on ISU E&O's "Estimating field capacity of farm machines." Custom harvest rates were used for silage.
- Fertilizer rates were based on ISU recommendations.
- Analyses were conducted for 2008-2015.

Cost and Price Assumptions

- **Cattle prices** were collected from ISU E&O's "Historic Cattle Prices" for the months that they were bought and sold.
- Feed prices (corn grain, silage, and hay) were consistent with those used for the crop enterprise budgets from the previous year. Distiller's grain prices were collected from USDA Agricultural Marketing Service.
- Bedding, labor, facilities, manure spreading costs were taken from ISU E&O's "Beef Feedlot Systems Manual".
- Veterinary and marketing costs were estimated using pen close-out reports.
- **Death loss** was calculated according to ISU E&O's "Livestock Enterprise Budgets for Iowa."

	Plan	1 (simple;	1 acre)	Plan 2	2 (diversified;	1 acre)
	\$/Unit	Units*	Total	\$/Unit	Units*	Total
			Gross i	ncome		
Corn grain	\$4.72	94.5 bu	\$446	\$4.72	49 bu	\$231
Corn stover				40.00	0.58 ton	23
Soybean	11.20	23.5 bu	263	11.20	14.3 bu	160
Oat silage				54.00	1.98 ton	107
Alfalfa				149.00	1.13 ton	168
Steer calves				116.00	9.5 cwt	1110
Manure				84.00	0.76 head	64
Total gross income			709			1860
			Variabl	le costs		
Corn grain	413.00	0.5 acre	207	399.00	0.25 acre	100
Corn stover				14.00	0.25 acre	4
Soybean	176.00	0.5 acre	88	188.00	0.25 acre	47
Oat silage				227.00	0.25 acre	57
Alfalfa				230.00	0.25 acre	58
Steer calves				1421.00	0.76 head	1080
Total variable costs			295			1340
			Other ex	xpenses		
Fixed machinery	61.00	1 acre	61	83.00	1 acre	83
Facilities, equipment				102.00	0.76 head	78
Total other expenses			61			161
Returns to land and			354			348
management						

*Crop production calculated as the product of acres in production and yield.

Crop enterprises

Yields increased with greater diversity

Corn

Soybean

Crop revenue

Revenue and costs of crop production

Livestock enterprises

Photos: ModernFarmer.com

Livestock revenue

Revenue and costs of cattle production

Whole farm

Increased crop enterprise returns largely offset livestock enterprise losses in integrated systems.

Returns to land and management were similar among all four systems.

Factors driving variation in returns to land and management between 2008 and 2015.

Source*	Significance
System	NS
Crop price	***
Cattle price ratio	***
(fed price: feeder price)	
Grain yield	***
Fertilizer N price	***
System x crop price	NS
System x grain yield	NS
System x N price	NS
System x cattle price ratio	*

Diversified crop rotations and livestock increased labor requirements.

Conclusions

1. Diversified crop rotations and integrated crop-livestock systems provide environmental benefits.

2. Returns to land and management are similar for simple and diverse farming systems with and without livestock.

3. However, more complex farming systems have a greater workload and management intensity.

Special thanks to:

- Matt Liebman
- Georgeanne Artz
- William Edwards
- Ann Johanns
- Alejandro Plastina
- Lee Schulz
- Mark Hanna
- Craig Chase
- Guiping Hu

IOWA STATE UNIVERSITY

Department of Agronomy

- Mark Rasmussen
- Jim Russell
- Joe Sellers
- Garland Dahlke
- Meghan Filbert

Questions?

